RESUMEN
BACKGROUND: IgE-mediated food allergy and eosinophilic esophagitis (EoE) are diseases commonly triggered by milk. Milk-responsive CD4+ T cells producing type 2 cytokines are present in both diseases, yet the clinical manifestation of disease in milk allergy (MA) and EoE are distinct. OBJECTIVE: To identify CD4+ T cell differences between EoE and MA that may be responsible for distinct disease manifestations. METHODS: The total and milk-specific CD4+ T cell phenotype of children with milk allergy (MA), EoE (active or in remission) and controls was measured using spectral flow cytometry of peripheral blood (all groups) or esophageal biopsies (EoE and control). RESULTS: Circulating milk-responsive T cells could be identified in active (A)-EoE and MA. An increased frequency of Th2A cells was also noted in MA and EoE. In circulating T cells, type 2 cytokine production was elevated in MA, but not EoE. Within the milk-responsive Tfh subset, a dichotomy of phenotype was noted: Tfh13 cells predominated in MA, while IL-10-producing Tfh cells predominated in EoE. In the esophagus, CD4+ T cells were constitutively activated and expressed not only type 2 cytokines, but also IL-10 and IL-21 in A-EoE. There was production of IgG4 from CD38+ plasma cells in close proximity to CD4+ T cells. In vitro activation studies demonstrated that IL-10 and IL-21 elicited strong IgG4 responses in B lymphocytes, while IL-4 and IL-13 promoted IgE production. CONCLUSION: Our studies demonstrate a dichotomy of Tfh responses that may be the basis for the different clinical manifestations to milk in EoE and MA.
RESUMEN
Immunoglobulin E (IgE)-mediated allergic diseases are driven by high-affinity allergen-specific IgE antibodies. IgE antibodies bind to Fc epsilon receptors on mast cells, prompting their degranulation and initiating inflammatory reactions upon allergen crosslinking. While most IgE-producing plasma cells have short lifespans, and IgE memory B cells are exceedingly rare, studies have indicated that non-IgE-expressing type 2-polarized IgG memory B cells serve as a reservoir of IgE memory in allergies. This review explores the B cell populations underlying IgE-mediated allergies, including the cellular and molecular processes that drive IgE class switching from non-IgE memory B cells. It highlights emerging evidence from human studies identifying type 2 IgG memory B cells as the source of pathogenic IgE in allergic responses.
RESUMEN
Immune tolerance to foods develops in the intestine upon food ingestion and is essential to prevent IgE-mediated food allergy and gut inflammation. In homeostasis, the intestine is a tolerogenic environment that favors the formation of food-specific Foxp3+ regulatory T cells. A tolerogenic intestinal environment depends on colonization by diverse microbiota and exposure to solid foods at a critical period in early life. These early immune responses lead to the induction of antigen-specific Foxp3+ regulatory T cells in draining mesenteric lymph nodes. These peripherally induced regulatory cells circulate and seed the lamina propria of the gut, exerting suppressive function systemically and locally in the intestine. Successful establishment of a tolerogenic intestinal environment in early life sets the stage for oral tolerance to new antigens in adult life.
Asunto(s)
Hipersensibilidad a los Alimentos , Tolerancia Inmunológica , Linfocitos T Reguladores , Animales , Humanos , Antígenos/inmunología , Hipersensibilidad a los Alimentos/inmunología , Factores de Transcripción Forkhead/metabolismo , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestinos/inmunología , Linfocitos T Reguladores/inmunologíaRESUMEN
Food allergy is caused by allergen-specific immunoglobulin E (IgE) antibodies, but little is known about the B cell memory of persistent IgE responses. Here, we describe, in human pediatric peanut allergy, a population of CD23+IgG1+ memory B cells arising in type 2 immune responses that contain high-affinity peanut-specific clones and generate IgE-producing cells upon activation. The frequency of CD23+IgG1+ memory B cells correlated with circulating concentrations of IgE in children with peanut allergy. A corresponding population of "type 2-marked" IgG1+ memory B cells was identified in single-cell RNA sequencing experiments. These cells differentially expressed interleukin-4 (IL-4)- and IL-13-regulated genes, such as FCER2/CD23+, IL4R, and germline IGHE, and carried highly mutated B cell receptors (BCRs). In children with high concentrations of serum peanut-specific IgE, high-affinity B cells that bind the main peanut allergen Ara h 2 mapped to the population of "type 2-marked" IgG1+ memory B cells and included clones with convergent BCRs across different individuals. Our findings indicate that CD23+IgG1+ memory B cells transcribing germline IGHE are a unique memory population containing precursors of high-affinity pathogenic IgE-producing cells that are likely to be involved in the long-term persistence of peanut allergy.
Asunto(s)
Hipersensibilidad a los Alimentos , Hipersensibilidad al Cacahuete , Humanos , Niño , Células B de Memoria , Inmunoglobulina G , Alérgenos , Inmunoglobulina ERESUMEN
The immune and nervous systems respond to dangerous stimuli to maintain homeostasis. In a recent issue of Nature, Florsheim et al. and Plum et al. uncover the crosstalk between immunoglobulin E (IgE)-mast-cell-mediated immune activation and neural responses driving behavioral avoidance of allergenic food.
Asunto(s)
Hipersensibilidad a los Alimentos , Mastocitos , Humanos , Presentación de Antígeno , Reacciones Cruzadas , Inmunoglobulina ERESUMEN
Food allergy is caused by allergen-specific IgE antibodies but little is known about the B cell memory of persistent IgE responses. Here we describe in human pediatric peanut allergy CD23 + IgG1 + memory B cells arising in type 2 responses that contain peanut specific clones and generate IgE cells on activation. These 'type2-marked' IgG1 + memory B cells differentially express IL-4/IL-13 regulated genes FCER2 / CD23, IL4R , and germline IGHE and carry highly mutated B cell receptors (BCRs). Further, high affinity memory B cells specific for the main peanut allergen Ara h 2 mapped to the population of 'type2-marked' IgG1 + memory B cells and included convergent BCRs across different individuals. Our findings indicate that CD23 + IgG1 + memory B cells transcribing germline IGHE are a unique memory population containing precursors of pathogenic IgE. One-Sentence Summary: We describe a unique population of IgG + memory B cells poised to switch to IgE that contains high affinity allergen-specific clones in peanut allergy.
RESUMEN
BACKGROUND: Atopic diseases are characterized by IgE antibody responses that are dependent on cognate CD4 T cell help and T cell-produced IL-4 and IL-13. Current models of IgE cell differentiation point to the role of IgG memory B cells as precursors of pathogenic IgE plasma cells. The goal of this work was to identify intrinsic features of memory B cells that are associated with IgE production in atopic diseases. METHODS: Peripheral blood B lymphocytes were collected from individuals with physician diagnosed asthma or atopic dermatitis (AD) and from non-atopic individuals. These samples were analyzed by spectral flow cytometry, single cell RNA sequencing (scRNAseq), and in vitro activation assays. RESULTS: We identified a novel population of IgG memory B cells characterized by the expression of IL-4/IL-13 regulated genes FCER2/CD23, IL4R, IL13RA1, and IGHE, denoting a history of differentiation during type 2 immune responses. CD23+ IL4R+ IgG+ memory B cells had increased occurrence in individuals with atopic disease. Importantly, the frequency of CD23+ IL4R+ IgG+ memory B cells correlated with levels of circulating IgE. Consistently, in vitro stimulated B cells from atopic individuals generated more IgE+ cells than B cells from non-atopic subjects. CONCLUSIONS: These findings suggest that CD23+ IL4R+ IgG+ memory B cells transcribing IGHE are potential precursors of IgE plasma cells and are linked to pathogenic IgE production.
Asunto(s)
Células B de Memoria , Receptores de IgE , Humanos , Receptores de IgE/metabolismo , Interleucina-13 , Interleucina-4 , Inmunoglobulina E , Inmunoglobulina G , Subunidad alfa del Receptor de Interleucina-4 , Lectinas Tipo CRESUMEN
T cell activation and function depend on Ca2+ signals mediated by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI1 proteins. We here investigated how SOCE controls T cell function in pulmonary inflammation during a T helper 1 (TH1) cell-mediated response to influenza A virus (IAV) infection and TH2 cell-mediated allergic airway inflammation. T cell-specific deletion of Orai1 did not exacerbate pulmonary inflammation and viral burdens following IAV infection but protected mice from house dust mite-induced allergic airway inflammation. ORAI1 controlled the expression of genes including p53 and E2F transcription factors that regulate the cell cycle in TH2 cells in response to allergen stimulation and the expression of transcription factors and cytokines that regulate TH2 cell function. Systemic application of a CRAC channel blocker suppressed allergic airway inflammation without compromising immunity to IAV infection, suggesting that inhibition of SOCE is a potential treatment for allergic airway disease.
Asunto(s)
Canales de Calcio , Virus de la Influenza A , Alérgenos , Animales , Calcio/metabolismo , Canales de Calcio/genética , Canales de Calcio/metabolismo , Señalización del Calcio , Citocinas/metabolismo , Factores de Transcripción E2F , Inflamación , Ratones , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.
Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Animales , COVID-19 , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Susceptibilidad a Enfermedades , Humanos , Inmunidad Innata , Memoria Inmunológica , Inflamación/inmunología , Inflamación/virología , Linfocitos/inmunología , Células Mieloides/inmunología , Pandemias , Neumonía Viral/diagnóstico , Neumonía Viral/patología , Neumonía Viral/terapia , SARS-CoV-2RESUMEN
The long-term effectiveness of antibody responses relies on the development of humoral immune memory. Humoral immunity is maintained by long-lived plasma cells that secrete antigen-specific antibodies, and memory B cells that rapidly respond to antigen re-exposure by generating new plasma cells and memory B cells. Developing effective immunological memory is essential for protection against pathogens, and is the basis of successful vaccinations. IgE responses have evolved for protection against helminth parasites infections and against toxins, but IgE is also a potent mediator of allergic diseases. There has been a dramatic increase in the incidence of allergic diseases in recent decades and this has provided the impetus to study the nature of IgE antibody responses. As will be discussed in depth in this review, the IgE memory response has unique features that distinguish it from classical B cell memory.
Asunto(s)
Hipersensibilidad/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Memoria Inmunológica/inmunología , Células Plasmáticas/inmunología , Anafilaxia/inmunología , Animales , Centro Germinal/inmunología , Humanos , Inmunidad Humoral/inmunología , Cambio de Clase de Inmunoglobulina/genética , Cambio de Clase de Inmunoglobulina/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BLRESUMEN
IgE antibodies are essential mediators of allergies. In a recent study in Science, Croote et al. (2018) characterize IgE cells isolated from individuals allergic to peanuts. Their findings provide insight into the differentiation of IgE cells in humans and have implications for our understanding of allergic disease.
Asunto(s)
Alérgenos , Hipersensibilidad , Linfocitos B , Humanos , Inmunoglobulina E , TranscriptomaRESUMEN
BACKGROUND: Blood eosinophils are used to determine eligibility for agents targeting IL-5 in patients with uncontrolled asthma. However, little is known about the variability of blood eosinophil measures in these patients before treatment initiation. OBJECTIVE: To characterize variability and patterns of variability of blood eosinophil levels in a real-world clinic for severe asthmatics. METHODS: Retrospective review of blood eosinophils measured over a 5-year period in patients enrolled in an urban clinic. Repeated measures of blood eosinophil levels in individuals were evaluated, and cluster analysis was performed to characterize patients by eosinophil patterns. Clinical characteristics associated with eosinophil levels and patterns of variability were analysed. RESULTS: Patients treated in the Bellevue Hospital Asthma Clinic within a 3-month period were identified (n = 219). Blood eosinophil measures were obtained over the previous 5 years. Only 6% (n = 13) of patients had levels that were consistently above 300 cells/µL. Nearly 50% (n = 104) had eosinophil levels that traversed the threshold of 300 cells/µL. In contrast, 102 (46%) had levels that never reached the threshold of 300 cells/µL. Cluster analyses revealed three clusters with differing patterns of levels and variability. There was a suggestion of decreased clinical control and increased atopy in the cluster with the greatest variability in blood eosinophil measures. CONCLUSION: In an urban clinic for patients referred for uncontrolled asthma, blood measures of eosinophils were variable and showed differing patterns of variability. These data reinforce the need to perform repeated eosinophil blood measures for appropriate designation for therapeutic intervention.
Asunto(s)
Asma/sangre , Asma/patología , Eosinófilos/metabolismo , Eosinófilos/patología , Índice de Severidad de la Enfermedad , Adulto , Anciano , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Estudios RetrospectivosRESUMEN
The originally published version of this Article contained errors in Fig. 4 that were introduced during the production process. In panel c, the two uppermost labels 'IgE spleen' and 'IgE BM' incorrectly read 'IgG1 spleen' and 'IgE1 BM', respectively. These errors have now been corrected in both the PDF and HTML versions of the Article.
RESUMEN
The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80+CD73+ and CD80-CD73-, contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80+CD73+ high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.
Asunto(s)
Linfocitos B/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Memoria Inmunológica/inmunología , 5'-Nucleotidasa/inmunología , 5'-Nucleotidasa/metabolismo , Animales , Linfocitos B/metabolismo , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Diferenciación Celular/inmunología , Células Cultivadas , Perfilación de la Expresión Génica/métodos , Hipersensibilidad/inmunología , Cambio de Clase de Inmunoglobulina/inmunología , Ratones Endogámicos BALB C , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Transcriptoma/inmunologíaRESUMEN
Animal models have highlighted the importance of innate lymphoid cells (ILCs) in multiple immune responses. However, technical limitations have hampered adequate characterization of ILCs in humans. Here, we used mass cytometry including a broad range of surface markers and transcription factors to accurately identify and profile ILCs across healthy and inflamed tissue types. High dimensional analysis allowed for clear phenotypic delineation of ILC2 and ILC3 subsets. We were not able to detect ILC1 cells in any of the tissues assessed, however, we identified intra-epithelial (ie)ILC1-like cells that represent a broader category of NK cells in mucosal and non-mucosal pathological tissues. In addition, we have revealed the expression of phenotypic molecules that have not been previously described for ILCs. Our analysis shows that human ILCs are highly heterogeneous cell types between individuals and tissues. It also provides a global, comprehensive, and detailed description of ILC heterogeneity in humans across patients and tissues.
Asunto(s)
Citometría de Flujo/métodos , Subgrupos Linfocitarios/inmunología , Linfocitos/inmunología , Humanos , Inmunidad Innata , FenotipoRESUMEN
Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body.
Asunto(s)
Sangre/inmunología , Movimiento Celular , Tejido Linfoide/inmunología , Espectrometría de Masas/métodos , Especificidad de Órganos , Subgrupos de Linfocitos T/inmunología , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Biodiversidad , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Citocinas/metabolismo , Humanos , Activación de Linfocitos , Ratones , Receptores Mensajeros de Linfocitos/metabolismo , TranscriptomaRESUMEN
The production of IL-21 by T follicular helper (Tfh) cells is vital in driving the germinal centre reaction and high affinity antibody formation. However, the degree of Tfh cell heterogeneity and function is not fully understood. We used a novel IL-21eGFP reporter mouse strain to analyze the diversity and role of Tfh cells. Through the analysis of GFP expression in lymphoid organs of IL-21eGFP mice, we identified a subpopulation of GFP(+), high IL-21 producing Tfh cells present only in Peyer's Patches. GFP(+)Tfh cells were found to be polyclonal and related to GFP(-)Tfh cells of Peyer's Patches in TCR repertoire composition and overall gene expression. Studies on the mechanisms of induction of GFP(+)Tfh cells demonstrated that they required the intestinal microbiota and a diverse repertoire of CD4(+) T cells and B cells. Importantly, ablation of GFP(+) cells resulted in a reduced frequency of Peyer's Patches IgG1 and germinal center B cells in addition to small but significant shifts in gut microbiome composition. Our work highlights the diversity among IL-21 producing CD4(+) Tfh cells, and the interrelationship between the intestinal bacteria and Tfh cell responses in the gut.