Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10113, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698046

RESUMEN

The coarse spatial resolution of the Gravity Recovery and Climate Experiment (GRACE) dataset has limited its application in local water resource management and accounting. Despite efforts to improve GRACE spatial resolution, achieving high resolution downscaled grids that correspond to local hydrological behaviour and patterns is still limited. To overcome this issue, we propose a novel statistical downscaling approach to improve the spatial resolution of GRACE-terrestrial water storage changes (ΔTWS) using precipitation, evapotranspiration (ET), and runoff data from the Australian Water Outlook. These water budget components drive changes in the GRACE water column in much of the global land area. Here, the GRACE dataset is downscaled from the original resolution of 1.0° × 1.0° to 0.05° × 0.05° over a large hydro-geologic basin in northern Australia (the Cambrian Limestone Aquifer-CLA), capturing sub- grid heterogeneity in ΔTWS of the region. The downscaled results are validated using data from 12 in-situ groundwater monitoring stations and water budget estimates of the CLA's land water storage changes from April 2002 to June 2017. The change in water storage over time (ds/dt) estimated from the water budget model was weakly correlated (r = 0.34) with the downscaled GRACE ΔTWS. The weak relationship was attributed to the possible uncertainties inherent in the ET datasets used in the water budget, particularly during the summer months. Our proposed methodology provides an opportunity to improve freshwater reporting using GRACE and enhances the feasibility of downscaling efforts for other hydrological data to strengthen local-scale applications.

2.
Chemosphere ; 352: 141345, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307330

RESUMEN

Understanding groundwater contamination from legacy landfills, including fate and transport of Per- and polyfluoroalkyl substances (PFAS), is a critical challenge for sustainable urban renewal. We analysed groundwater within and surrounding legacy landfills at Fishermans Bend for PFAS and complementary hydrochemical indicators. Sampling in 2017 revealed extensive PFAS contamination from the landfills. We re-examined concentrations after a 3-year period, to assess natural source attenuation and evolution of the contaminant plumes. Total PFAS (∑38PFAS) ranged from 88 to 973 ng/L, with relatively high concentrations (mean = 500 ng/L, n = 4) in samples directly within the waste mass of a large legacy municipal and industrial landfill (Port Melbourne Tip). Two samples on the boundary of a former construction and demolition waste landfill also had elevated PFAS concentrations (∑38PFAS = 232 and 761.5 ng/L). Down-gradient of the landfills, groundwater showed reductions in total PFAS, though still maintained considerable loads (∑PFAS = 107.5-207.5 ng/L). Long-chained PFAS showed greatest reductions relative to chloride concentrations down-gradient of the landfills, consistent with sorption as the predominant removal mechanism. The dominant mass fractions detected were similar in 2017 and 2020 (median: PFOS > PFHxS > PFHxA > PFOA); comprising the widely known, persistent 'legacy' PFAS. Re-sampled bores returned similar concentrations of these PFAS in 2017 and 2020 (median %RPDs of 0.0, 9.3 and 15.4, for PFOS, PFOA, and PFHxS, respectively). However, there were marked increases in concentrations of certain PFAS in three bores - including a previously un-impacted background site. The results show limited attenuation of legacy landfill PFAS contamination in groundwater over a 3-year period.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Remodelación Urbana , Contaminantes Químicos del Agua/análisis , Instalaciones de Eliminación de Residuos , Fluorocarburos/análisis , Australia , Ácidos Alcanesulfónicos/análisis
3.
Water Res ; 245: 120645, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769420

RESUMEN

Endocrine Disrupting Compounds (EDCs) are ubiquitous in soil and water system and have become a great issue of environmental and public health concern since the 1990s. However, the occurrence and mechanism(s) of EDCs' migration and transformation at the watershed scale are poorly understood. A review of EDCs pollution in China's major watersheds (and comparison to other countries) has been carried out to better assess these issues and associated ecological risks, compiling a large amount of data. Comparing the distribution characteristics of EDCs in water environments around the world and analyzing various measures and systems for managing EDCs internationally, the significant insights of the review are: 1) There are significant spatial differences and concentration variations of EDCs in surface water and groundwater in China, yet all regions present non-negligible ecological risks. 2) The hyporheic zone, as a transitional zone of surface water and groundwater interaction, can effectively adsorb and degrade EDCs and prevent the migration of high concentrations of EDCs from surface water to groundwater. This suggests that more attention needs to be paid to the role played by critical zones in water environments, when considering the removal of EDCs in water environments. 3) In China, there is a lack of comprehensive and effective regulations to limit and reduce EDCs generated during human activities and their discharge into the water environment. 4) To prevent the deterioration of surface water and groundwater quality, the monitoring and management of EDCs in water environments should be strengthened in China. This review provides a thorough survey of scientifically valid data and recommendations for the development of policies for the management of EDCs in China's water environment.


Asunto(s)
Disruptores Endocrinos , Agua Subterránea , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/análisis , Agua , China , Disruptores Endocrinos/análisis , Monitoreo del Ambiente
4.
Sci Total Environ ; 887: 163936, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37149179

RESUMEN

An 'oasis' signifies a refugium of safety, recovery, relaxation, fertility, and productivity in an inhospitable desert, a sweet spot in a barren landscape where life-giving water spills forth from the Earth. Remarkable mythological congruencies exist across dryland cultures worldwide where oases or 'arid-land springs' occur. In many places they also provide specialised habitats for an extraordinary array of endemic organisms. To inform their management, and maintain their integrity, it is essential to understand the hydrogeology of aquifers and springs. Gravity-fed vs artesian aquifers; actively recharged vs fossil aquifers, and sources of geothermal activity are important concepts presented here. There consequences for oases of sustainable and unsustainable groundwater extraction, and other examples of effective conservation management. Oases are archetypes for human consciousness, habitats that deserve protection and conservation, and a lingua franca for multicultural values and scientific exchange. We represent an international Fellowship of the Spring seeking to encompass and facilitate the stewardship of oases and aquifers through improved knowledge, outreach, and governance.


Asunto(s)
Agua Subterránea , Manantiales Naturales , Humanos , Becas , Ecosistema , Agua Dulce
5.
Sci Total Environ ; 802: 149727, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34461481

RESUMEN

This is the first study to show microplastics contamination in an alluvial sedimentary aquifer that has been capped from the atmosphere. Microplastics are often reported in biotic and abiotic environments, but little is known about their occurrence in groundwater systems. In this study, eight of the most commonly found microplastics in the environment (polyethylene, PE; polystyrene, PS; polypropylene, PP; polyvinyl chloride, PVC; polyethylene terephthalate, PET; polycarbonate, PC; polymethylmethacrylate, PMMA; and polyamide, PA) were analysed in triplicate groundwater samples (n = 21) from five sampling sites across seven capped groundwater monitoring bores from Bacchus Marsh (Victoria, Australia) using Agilent's novel Laser Direct Infra-Red (LDIR) imaging system. Microplastics were detected in all samples, with PE, PP, PS and PVC detected in all seven bores. The average size of the microplastics identified was 89 ± 55 µm (St.Dev.), ranging from 18 to 491 µm. The average number of microplastics detected across all sites was 38 ± 8 microplastics/L, ranging from 16 to 97 particles/L. PE and PVC in total contributed to 59% of the total sum of microplastics detected. PE was consistently detected in all seven bores (average: 11 particles/L), while PVC was more pronounced in a bore adjacent to a meat processor (52 particles/L) compared to that of its overall average of 12 particles/L. A statistically significant positive correlation was observed between PVC and PS (R = 0.934, p ≤0.001). As this study collected samples from capped groundwater bores, the most probable avenue for microplastics was permeation through soil. Therefore, to further understand the fate and transport of microplastics within a groundwater system, it is necessary to analyse a greater range of groundwater bores not only from Australia but throughout the world.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Microplásticos , Plásticos , Victoria , Contaminantes Químicos del Agua/análisis
6.
Sci Total Environ ; 806(Pt 4): 150913, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653454

RESUMEN

With rapid socio-economic development, China's coastal areas are among the fastest growing and most economically dynamic regions in the world. Under the influence of climate change and human activities, protecting the quality of coastal groundwater has emerged as one of the key environmental and resource management issues for these areas. This paper reviews (for the first time) groundwater quality data for the coastal basins of China, where over 600 million people live, focussing on key inorganic indicators/pollutants; groundwater salinity, nitrate, fluoride, and arsenic. These pollutants present major water quality issues and are also valuable as indicators of wider processes and influences impacting coastal groundwater quality - e.g. saltwater intrusion, agricultural pollution and release of geo-genic contaminants. We discuss the major drivers causing water quality problems in different regions and assess future trajectories and challenges for controlling changes in coastal groundwater quality in China. Multiple processes, including modern and palaeo seawater/brine migration, groundwater pumping for agricultural irrigation, pollution from agrochemical application, rapid development of aquaculture, urban growth, and water transfer projects, may all be responsible (to different degrees) for changes observed in coastal groundwater quality, and associated long-term health and ecological effects. We discuss implications for sustainable coastal aquifer management in China, arguing that groundwater monitoring and contamination control measures require urgent improvement. The evolution and treatment of coastal groundwater quality problems in China will serve as an important warning and example for other countries facing similar pressures, due to climate change, coastal development, and intensification of anthropogenic activity in coming decades.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , China , Monitoreo del Ambiente , Humanos , Agua de Mar , Contaminantes Químicos del Agua/análisis
7.
Water Res ; 209: 117909, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34906879

RESUMEN

Ensuring access to water, sanitation, and hygiene (WASH) for all requires a thorough understanding of the many contextual complexities that influence access to these services. Complexities spanning environmental, economic, political, and social dimensions, amongst others, can intersect and compound to hinder sustainable access to WASH for certain demographics or entire communities. This is of particular importance for challenging contexts where conventional WASH approaches are ineffective. Targeted approaches are required for these contexts to ensure that communities are not left behind in pursuit of the Sustainable Development Goals. Review of WASH literature identified seven broad types of challenging contexts: challenging environments, transient or environmentally-dependant communities, climate vulnerable communities, remote communities, poor urban communities, refugee camps, and emergency contexts. This review explores the intersecting complexities affecting access to WASH in these challenging contexts and how failure to understand the interconnectedness of these complexities has resulted in WASH solutions that are unaffordable, not inclusive, or unsustainable. To our knowledge, this review is the first of its kind. We emphasise the need to unpack intersecting complexities affecting WASH in challenging contexts, and we believe that incorporating such an approach early in WASH programs can ensure that intersecting complexities are accounted for in the design of WASH solutions. Ultimately, this novel lens may provide critical guidance for WASH programs in challenging contexts, ensuring that WASH solutions are contextually appropriate.

8.
Sci Total Environ ; 666: 1198-1208, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-30970485

RESUMEN

Historical, or 'legacy' landfills are commonly unlined and can therefore pose risks to human health and the environment via the discharge of leachate to sensitive groundwater and surface waters. Characterising the impacts on groundwater from legacy landfills located within urban re-development precincts is therefore of growing importance worldwide and is difficult using conventional indicators. At Australia's largest urban re-development precinct, Fishermans Bend, seven known legacy landfills exist, as well as numerous other contamination sources (e.g. historical industrial spillages). Conventional landfill leachate indicators (e.g. ammonia-N and bicarbonate) and perfluoroalkyl acids (PFAA) were measured in 36 bores to distinguish leachate-impacted groundwater from non-impacted areas. Whilst eleven bores showed clear leachate impacts based on conventional indicators, others did not show clearly identifiable leachate signals, particularly those installed near landfills thought to have accepted a larger component of non-putrescible waste (e.g. industrial, construction and/or demolition waste). A new index for detection of legacy landfill leachate impact on groundwater was therefore developed, incorporating perfluorooctanoate (PFOA) as a proportion of PFAA (PFOA/∑PFAA) into an existing method based on leachate to native cation ratios, ('L/N ratios'). Significant differences between the means of the leachate-impacted versus non-impacted bores were found using the 'modified L/N ratio' (p = .006), whereas no significant differences were found between the means of the two groups using the standard L/N ratio (p = .063). The modified L/N ratios also showed a statistically significant difference between the means of the bores impacted by municipal waste versus those impacted by non-putrescible waste (p = .003), indicating they are a much more sensitive indicator of both the existence and type of landfill leachate impact on groundwater than previously reported. This new index may prove particularly useful in complex urban areas where multiple potential contamination sources exist, and land use histories are either unknown or complicated. CAPSULE: Conventional methods for leachate detection in groundwater surrounding legacy landfills have been analysed and further developed via the inclusion of perfluoroalkyl acids, to better understand contaminant sources, fate and transport.

9.
Environ Pollut ; 248: 101-113, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30784829

RESUMEN

The extent of per- and polyfluoroalkyl substances (PFAS) in groundwater surrounding legacy landfills is currently poorly constrained. Seventeen PFAS were analysed in groundwater surrounding legacy landfills in a major Australian urban re-development precinct. Sampling locations (n = 13) included sites installed directly in waste material and down-gradient from landfills, some of which exhibited evidence of leachate contamination including elevated concentrations of ammonia-N (≤106 mg/L), bicarbonate (≤1,740 mg/L) and dissolved methane (≤10.4 mg/L). Between one and fourteen PFAS were detected at all sites and PFOS, PFHxS, PFOA and PFBS were detected in all samples. The sum of detected PFAS (∑14PFAS) varied from 26 ng/L at an ambient background site to 5,200 ng/L near a potential industrial point-source. PFHxS had the highest median concentration (34 ng/L; range: 2.6-280 ng/L) followed by PFOS (26 ng/L; range: 1.3-4,800 ng/L), PFHxA (19 ng/L; range:

Asunto(s)
Monitoreo del Ambiente/métodos , Fluorocarburos/análisis , Agua Subterránea/química , Ácidos Sulfónicos/análisis , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis , Australia , Ácidos Carboxílicos/análisis , Remodelación Urbana
10.
Sci Total Environ ; 651(Pt 2): 2701-2711, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30463125

RESUMEN

Distinguishing sources of groundwater contamination in regions with multiple potential sources can be challenging using conventional markers. In this study, isotopes of nitrate (δ15NNO3 and δ18ONO3) were examined in conjunction with other hydrochemical parameters to better distinguish sources of groundwater contamination, where intensive agriculture occurs adjacent to a wastewater treatment plant (WWTP). High nitrate concentrations were found in groundwater both within the WWTP site and surrounding market garden farms (maximum of 99 mg/L and 78 mg/L nitrate as N, respectively). Ranges and median δ15NNO3 values showed clear differences between sample groups. In groundwater close to the WWTP, δ15NNO3 and δ18ONO3 values ranged from 10.4 to 41.2‰ and -0.5to 21.3‰, respectively, indicating predominantly sewage-sourced nitrate, while samples within market gardens showed evidence of mixed fertilizer (manure and synthetic) sourced nitrate, with δ15NNO3 and δ18ONO3 values between 7.2 and 29.8‰ and 0.4 to 15.1‰, respectively. Nitrate interpreted to be derived from the WWTP was also typically associated with elevated ammonia as N (median concentration of 17 mg/L) and SO4 (median concentration of 350 mg/L). These distinctive signatures allowed for clearer delineation of the extent and overlap between different contaminant plumes than otherwise possible. Geochemical conditions in groundwater surrounding the WWTP appear to promote denitrification, evident through enrichment in δ15NNO3 and δ18ONO3 and reduced nitrate concentrations between sampling rounds (locally). However, isotopic signatures in market garden areas showed no evidence of denitrification, and groundwater exhibited conditions likely to preserve nitrate (e.g. dissolved oxygen levels >2 mg/L). There is limited evidence of nitrate contamination currently impacting a nearby groundwater dependent ecosystem (Tootgarook Swamp), located down-gradient from the WWTP. This research demonstrates that a combination of hydrochemical and isotope data can help resolve sources of groundwater contamination and characterise nutrient degradation behaviour in settings with multiple inputs.

11.
Environ Pollut ; 241: 787-799, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29908502

RESUMEN

Determining sources of heavy metals in soils, sediments and groundwater is important for understanding their fate and transport and mitigating human and environmental exposures. Artificially imported fill, natural sediments and groundwater from 240 ha of reclaimed land at Fishermans Bend in Australia, were analysed for heavy metals and other parameters to determine the relative contributions from different possible sources. Fishermans Bend is Australia's largest urban re-development project, however, complicated land-use history, geology, and multiple contamination sources pose challenges to successful re-development. We developed a method for heavy metal source separation in groundwater using statistical categorisation of the data, analysis of soil leaching values and fill/sediment XRF profiling. The method identified two major sources of heavy metals in groundwater: 1. Point sources from local or up-gradient groundwater contaminated by industrial activities and/or legacy landfills; and 2. contaminated fill, where leaching of Cu, Mn, Pb and Zn was observed. Across the precinct, metals were most commonly sourced from a combination of these sources; however, eight locations indicated at least one metal sourced solely from fill leaching, and 23 locations indicated at least one metal sourced solely from impacted groundwater. Concentrations of heavy metals in groundwater ranged from 0.0001 to 0.003 mg/L (Cd), 0.001-0.1 mg/L (Cr), 0.001-0.2 mg/L (Cu), 0.001-0.5 mg/L (Ni), 0.001-0.01 mg/L (Pb), and 0.005-1.2 mg/L (Zn). Our method can determine the likely contribution of different metal sources to groundwater, helping inform more detailed contamination assessments and precinct-wide management and remediation strategies.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea/química , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Australia , China , Ciudades , Humanos , Suelo , Contaminantes del Suelo/análisis
12.
Sci Total Environ ; 644: 1409-1417, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743853

RESUMEN

The purpose of this study was to investigate the contribution of per- and polyfluoroalkyl substances (PFASs) to groundwater at a location where recycled water from a wastewater treatment plant (WWTP) is used to irrigate crops. Groundwater from Werribee South, located west of Melbourne, Australia, was sampled over two campaigns in 2017 and 2018, extracted using solid phase extraction (SPE) and analysed with liquid chromatography-tandem mass spectrometry (LC-MS/MS-QQQ). PFASs were detected in 100% of the groundwater samples. The sum total of twenty PFAS compounds (∑20PFASs) for all sites in the study ranged from <0.03 to 74 ng/L (n = 28) and the highest levels of which were observed in the centre of the irrigation district. Perfluorooctanesulfonic acid (PFOS) was the most detected compound overall (96%) with a mean concentration of 11 ng/L (<0.03-34 ng/L), followed by perfluorobutanesulfonic acid (PFBS; 86%, 4.4 ng/L), perfluorooctanoic acid (PFOA; 82%, 2.2 ng/L) and perfluorobutanoic acid (PFBA; 77%, 6.1 ng/L). Concentrations of PFASs found in this study are greater than background levels of PFASs detected in groundwater and are in the range of concentrations typically detected in wastewater effluent. This study presents evidence that the use of recycled water can be a source of PFAS contamination to groundwater.

13.
Sci Total Environ ; 609: 607-620, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28763658

RESUMEN

Identification of different nitrate sources in groundwater is challenging in areas with diverse land use and multiple potential inputs. An area with mixed land-uses, typical of the piedmont-plain recharge area of the North China Plain, was selected to investigate different nitrate sources and the impact of land use on nitrate distribution in groundwater. Multiple environmental tracers were examined, including major ions, stable isotopes of water (δ2H-H2O, δ18O-H2O) and nitrate (δ15N-NO3- and δ18O-NO3-). Groundwater was sampled from four land-use types; natural vegetation (NV), farmland (FL), economic forestland (EF) and residential areas (RA). A mixing model using δ18O and Cl- concentrations showed that groundwater recharge predominantly comprises precipitation and lateral groundwater flow from areas of natural vegetation in the upper catchment, while irrigation return water and wastewater from septic tanks were major inputs in farmland and residential areas, respectively. Land use variation is the major contributing factor to different nitrate concentrations. In total, 80%, 49% and 86% of samples from RA, FL and EF, respectively exceeded the WHO standard (50mg/L NO3-), compared to 6.9% of samples from NV. Isotopes of δ15N-NO3- and δ18O-NO3- verified that nitrate in groundwater of the NV (with δ15N ranging from 1.7‰ to 4.7‰) was sourced from soil and precipitation. Examination of δ15N-NO3- vs δ18O-NO3- values along with multivariate statistical analysis (principle component and cluster analysis) helped identify sources with overlapping isotopic values in other land-use areas (where δ15N values range from 2.5‰ to 10.2‰). Manure and septic waste were dominant sources for most groundwater with high NO3- and Cl- concentrations in both farmland and residential areas. The lack of de-nitrification and fact that the area is a recharge zone for the North China Plain highlight the importance of controlling nitrate sources through careful application of manure and fertilizers, and control of septic leakage.

16.
Sci Total Environ ; 580: 602-625, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27986323

RESUMEN

Following recent rapid industrialization, China is now one of the largest producers and consumers of organic chemicals in the world. This is compounded by variable regulatory oversight with respect to storage, use and waste management of these chemicals and their byproducts. This review synthesizes the data on the distribution of selected persistent organic pollutants (POPs) in waters in China. Surface water heavily polluted with POPs is distributed in the Yangtze River Estuary, Pearl River Delta, Minjiang River Estuary, Jiulongjiang Estuary, Daya Bay, Taihu Lake, and the waterways of Zhejiang Province, where concentrations of Polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) frequently exceed both international and Chinese guideline values. These areas are mainly distributed along the southeast coast of China, within or downstream of major manufacturing districts, intensive agricultural basins, and other industrial centers. A comparison of the levels of OCPs in the aquatic environment of China with other indicative regions worldwide shows comparable levels of pollution (overall range from below detection limit (BDL) to 5104.8ng/L and regional means from 2.9-929.6ng/L). PAHs and PCBs pollution appear to be particularly serious in China (PAHs overall ranging from BDL to 474,000ng/L with regional means from 15.1-72,400ng/L; PCBs from BDL to 3161ng/L with regional means ranging from 0.2-985.2ng/L). There is as yet limited evidence of serious perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) pollution. We discuss major sources and processes responsible for high POP occurrence using a range of measures (including diagnostic ratios of different compounds), regulatory oversight and policy gaps in the control of POPs in China, and potential long-term health and ecological effects. We argue that water quality guidelines, pollution control measures and cleanup strategies for POPs in China should be urgently improved.

17.
Environ Sci Pollut Res Int ; 24(15): 13168-13183, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27497852

RESUMEN

Recent expansion of shale and coal seam gas production worldwide has increased the need for geochemical studies in aquifers near gas deposits, to determine processes impacting groundwater quality and better understand the origins and behavior of dissolved hydrocarbons. We determined dissolved methane concentrations (n = 36) and δ13C and δ2H values (n = 31) in methane and groundwater from the 46,000-km2 Gippsland Basin in southeast Australia. The basin contains important water supply aquifers and is a potential target for future unconventional gas development. Dissolved methane concentrations ranged from 0.0035 to 30 mg/L (median = 8.3 mg/L) and were significantly higher in the deep Lower Tertiary Aquifer (median = 19 mg/L) than the shallower Upper Tertiary Aquifer (median = 3.45 mg/L). Groundwater δ13CDIC values ranged from -26.4 to -0.4 ‰ and were generally higher in groundwater with high methane concentrations (mean δ13CDIC = -9.5 ‰ for samples with >3 mg/L CH4 vs. -16.2 ‰ in all others), which is consistent with bacterial methanogenesis. Methane had δ13CCH4 values of -97.5 to -31.8 ‰ and δ2HCH4 values of -391 to -204 ‰ that were also consistent with bacterial methane, excluding one site with δ13CCH4 values of -31.8 to -37.9 ‰, where methane may have been thermogenic. Methane from different regions and aquifers had distinctive stable isotope values, indicating differences in the substrate and/or methanogenesis mechanism. Methane in the Upper Tertiary Aquifer in Central Gippsland had lower δ13CCH4 (-83.7 to -97.5 ‰) and δ2HCH4 (-236 to -391 ‰) values than in the deeper Lower Tertiary Aquifer (δ13CCH4 = -45.8 to -66.2 ‰ and δ2HCH4 = -204 to -311 ‰). The particularly low δ13CCH4 values in the former group may indicate methanogenesis at least partly through carbonate reduction. In deeper groundwater, isotopic values were more consistent with acetate fermentation. Not all methane at a given depth and location is interpreted as being necessarily produced in situ. We propose that high dissolved sulphate concentrations in combination with high methane concentrations can indicate gas resulting from contamination and/or rapid migration as opposed to in situ bacterial production or long-term migration. Isotopes of methane and dissolved inorganic carbon (DIC) serve as further lines of evidence to distinguish methane sources. The study demonstrates the value of isotopic characterisation of groundwater including dissolved gases in basins containing hydrocarbons.


Asunto(s)
Monitoreo del Ambiente , Metano , Australia , Agua Subterránea , Contaminantes Químicos del Agua
18.
Environ Pollut ; 218: 1222-1233, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27613318

RESUMEN

China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO3N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ15N and δ18ONO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación del Agua/prevención & control , China , Agua Subterránea , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
20.
Sci Total Environ ; 544: 995-1007, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26706771

RESUMEN

A multi-layered coastal aquifer in southeast Australia was assessed using environmental isotopes, to identify the origins of salinity and its links to palaeo-environmental setting. Spatial distribution of groundwater salinity (electrical conductivity values ranging from 0.395 to 56.1 mS/cm) was examined along the coastline along with geological, isotopic and chemical data. This allowed assessment of different salinity sources and emplacement mechanisms. Molar chloride/bromide ratios range from 619 to 1070 (621 to 705 in samples with EC >15 mS/cm), indicating salts are predominantly marine. Two distinct vertical salinity profiles were observed, one with increasing salinity with depth and another with saline shallow water overlying fresh groundwater. The saline shallow groundwater (EC=45.4 to 55.7 mS/cm) has somewhat marine-like stable isotope ratios (δ(18)O=-2.4 to -1.9 ‰) and radiocarbon activities indicative of middle Holocene emplacement (47.4 to 60.4pMC). This overlies fresher groundwater with late Pleistocene radiocarbon ages and meteoric stable isotopes (δ(18)O=-5.5 to -4.6‰). The configuration suggests surface inundation of the upper sediments by marine water during the mid-Holocene (c. 2-8 kyr BP), when sea level was 1-2m above today's level. Profiles of chloride, stable isotopes, and radiocarbon indicate mixing between this pre-modern marine water and fresh meteoric groundwater to varying degrees around the coastline. Mixing calculations using chloride and stable isotopes show that in addition to fresh-marine water mixing, some salinity is derived from transpiration by halophytic vegetation (e.g. mangroves). The δ(13)C ratios in saline water (-17.6 to -18.4‰) also have vegetation/organic matter signatures, consistent with emplacement by surface inundation and extensive interaction between vegetation and recharging groundwater. Saline shallow groundwater is preserved only in areas where low permeability sediments have slowed subsequent downwards propagation. The configuration is unlikely to be stable long-term due to fluid density; this may be exacerbated by pumping the underlying aquifer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...