Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 15(9): e1008065, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31557263

RESUMEN

Most known thioredoxin-type proteins (Trx) participate in redox pathways, using two highly conserved cysteine residues to catalyze thiol-disulfide exchange reactions. Here we demonstrate that the so far unexplored Trx2 from African trypanosomes (Trypanosoma brucei) lacks protein disulfide reductase activity but functions as an effective temperature-activated and redox-regulated chaperone. Immunofluorescence microscopy and fractionated cell lysis revealed that Trx2 is located in the mitochondrion of the parasite. RNA-interference and gene knock-out approaches showed that depletion of Trx2 impairs growth of both mammalian bloodstream and insect stage procyclic parasites. Procyclic cells lacking Trx2 stop proliferation under standard culture conditions at 27°C and are unable to survive prolonged exposure to 37°C, indicating that Trx2 plays a vital role that becomes augmented under heat stress. Moreover, we found that Trx2 contributes to the in vivo infectivity of T. brucei. Remarkably, a Trx2 version, in which all five cysteines were replaced by serine residues, complements for the wildtype protein in conditional knock-out cells and confers parasite infectivity in the mouse model. Characterization of the recombinant protein revealed that Trx2 can coordinate an iron sulfur cluster and is highly sensitive towards spontaneous oxidation. Moreover, we discovered that both wildtype and mutant Trx2 protect other proteins against thermal aggregation and preserve their ability to refold upon return to non-stress conditions. Activation of the chaperone function of Trx2 appears to be triggered by temperature-mediated structural changes and inhibited by oxidative disulfide bond formation. Our studies indicate that Trx2 acts as a novel chaperone in the unique single mitochondrion of T. brucei and reveal a new perspective regarding the physiological function of thioredoxin-type proteins in trypanosomes.


Asunto(s)
Proteínas Protozoarias/metabolismo , Tiorredoxinas/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Genes Protozoarios , Humanos , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Oxidación-Reducción , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/antagonistas & inhibidores , Tiorredoxinas/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidad
2.
PLoS Pathog ; 14(1): e1006855, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346416

RESUMEN

In contrast to Trypanosoma brucei gambiense and T. b. rhodesiense (the causative agents of human African trypanosomiasis), T. b. brucei is lysed by apolipoprotein-L1 (apoL1)-containing human serum trypanolytic factors (TLF), rendering it non-infectious to humans. While the mechanisms of TLF1 uptake, apoL1 membrane integration, and T. b. gambiense and T. b. rhodesiense apoL1-resistance have been extensively characterised, our understanding of the range of factors that drive apoL1 action in T. b. brucei is limited. Selecting our bloodstream-form T. b. brucei RNAi library with recombinant apoL1 identified an array of factors that supports the trypanocidal action of apoL1, including six putative ubiquitin modifiers and several proteins putatively involved in membrane trafficking; we also identified the known apoL1 sensitivity determinants, TbKIFC1 and the V-ATPase. Most prominent amongst the novel apoL1 sensitivity determinants was a putative ubiquitin ligase. Intriguingly, while loss of this ubiquitin ligase reduces parasite sensitivity to apoL1, its loss enhances parasite sensitivity to TLF1-dominated normal human serum, indicating that free and TLF1-bound apoL1 have contrasting modes-of-action. Indeed, loss of the known human serum sensitivity determinants, p67 (lysosomal associated membrane protein) and the cathepsin-L regulator, 'inhibitor of cysteine peptidase', had no effect on sensitivity to free apoL1. Our findings highlight a complex network of proteins that influences apoL1 action, with implications for our understanding of the anti-trypanosomal action of human serum.


Asunto(s)
Antiprotozoarios/metabolismo , Apolipoproteína L1/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Animales , Antiprotozoarios/farmacología , Apolipoproteína L1/farmacología , Pruebas de Sensibilidad Parasitaria , Mapas de Interacción de Proteínas , Proteolisis , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/inmunología , Tripanosomiasis Africana/inmunología , Tripanosomiasis Africana/metabolismo , Tripanosomiasis Africana/parasitología
3.
FASEB J ; 31(10): 4649-4660, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28679527

RESUMEN

Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO "essential medicine" eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas TbAAT2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular ornithine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phenocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT drugs.-Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei.


Asunto(s)
Antineoplásicos/farmacología , Ornitina/metabolismo , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/metabolismo , Animales , Eflornitina/farmacología , Humanos , Ornitina Descarboxilasa/efectos de los fármacos , Ornitina Descarboxilasa/genética , Poliaminas/metabolismo , Trypanosoma brucei brucei/aislamiento & purificación , Tripanosomiasis Africana/tratamiento farmacológico
4.
PLoS Pathog ; 10(5): e1004130, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24830321

RESUMEN

Closely related African trypanosomes cause lethal diseases but display distinct host ranges. Specifically, Trypanosoma brucei brucei causes nagana in livestock but fails to infect humans, while Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause sleeping sickness in humans. T. b. brucei fails to infect humans because it is sensitive to innate immune complexes found in normal human serum known as trypanolytic factor (TLF) 1 and 2; the lytic component is apolipoprotein-L1 in both TLFs. TLF resistance mechanisms of T. b. gambiense and T. b. rhodesiense are now known to arise through either gain or loss-of-function, but our understanding of factors that render T. b. brucei susceptible to lysis by human serum remains incomplete. We conducted a genome-scale RNA interference (RNAi) library screen for reduced sensitivity to human serum. Among only four high-confidence 'hits' were all three genes previously shown to sensitize T. b. brucei to human serum, the haptoglobin-haemoglobin receptor (HpHbR), inhibitor of cysteine peptidase (ICP) and the lysosomal protein, p67, thereby demonstrating the pivotal roles these factors play. The fourth gene identified encodes a predicted protein with eleven trans-membrane domains. Using chemical and genetic approaches, we show that ICP sensitizes T. b. brucei to human serum by modulating the essential cathepsin, CATL, a lysosomal cysteine peptidase. A second cathepsin, CATB, likely to be dispensable for growth in in vitro culture, has little or no impact on human-serum sensitivity. Our findings reveal major and novel determinants of human-serum sensitivity in T. b. brucei. They also shed light on the lysosomal protein-protein interactions that render T. b. brucei exquisitely sensitive to lytic factors in human serum, and indicate that CATL, an important potential drug target, has the capacity to resist these factors.


Asunto(s)
Proteínas Sanguíneas/fisiología , Catepsina L/metabolismo , Inmunidad Innata , Tripanocidas/sangre , Trypanosoma brucei brucei/enzimología , Catepsina L/genética , Células Cultivadas , Interacciones Huésped-Patógeno/genética , Humanos , Organismos Modificados Genéticamente , Proteolisis , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/inmunología
5.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297900

RESUMEN

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Asunto(s)
Adaptación Biológica/fisiología , Venenos Elapídicos , Elapidae , Evolución Molecular , Genoma/fisiología , Transcriptoma/fisiología , Animales , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Elapidae/genética , Elapidae/metabolismo , Glándulas Exocrinas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
6.
PLoS One ; 7(8): e41888, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22879897

RESUMEN

Venom is a critical evolutionary innovation enabling venomous snakes to become successful limbless predators; it is therefore vital that venomous snakes possess a highly efficient venom production and delivery system to maintain their predatory arsenal. Here, we exploit the unusual stability of messenger RNA in venom to conduct, for the first time, quantitative PCR to characterise the dynamics of gene expression of newly synthesised venom proteins following venom depletion. Quantitative PCR directly from venom enables real-time dynamic studies of gene expression in the same animals because it circumvents the conventional requirement to sacrifice snakes to extract mRNA from dissected venom glands. Using qPCR and proteomic analysis, we show that gene expression and protein re-synthesis triggered by venom expulsion peaks between days 3-7 of the cycle of venom replenishment, with different protein families expressed in parallel. We demonstrate that venom re-synthesis occurs very rapidly following depletion of venom stores, presumably to ensure venomous snakes retain their ability to efficiently predate and remain defended from predators. The stability of mRNA in venom is biologically fascinating, and could significantly empower venom research by expanding opportunities to produce transcriptomes from historical venom stocks and rare or endangered venomous species, for new therapeutic, diagnostic and evolutionary studies.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Estabilidad del ARN/genética , Venenos de Serpiente/biosíntesis , Venenos de Serpiente/genética , Estructuras Animales , Animales , Cromatografía Líquida de Alta Presión , ADN Complementario/genética , Electroforesis en Gel de Poliacrilamida , Liofilización , Espectrometría de Masas , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , ARN Mensajero/metabolismo , Venenos de Serpiente/química , Venenos de Serpiente/metabolismo
7.
J Proteomics ; 74(9): 1768-80, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21723969

RESUMEN

Antivenom is an effective treatment of snakebite but, because of the complex interplay of fiscal, epidemiological, therapeutic efficacy and safety issues, the mortality of snakebite remains unacceptably high. Efficiently combating this high level of preventable death amongst the world's most disadvantaged communities requires the globally-coordinated action of multiple intervention programmes. This is the overall objective of the Global Snakebite Initiative. This paper describes the challenges facing the research community to develop snakebite treatments that are more efficacious, safe and affordable than current therapy.


Asunto(s)
Cooperación Internacional , Organizaciones , Mordeduras de Serpientes/tratamiento farmacológico , Antivenenos/uso terapéutico , Atención a la Salud , Humanos , Investigación
8.
Toxicon ; 55(4): 864-73, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20026155

RESUMEN

Bitis arietans is considered one of the most medically significant snakes in Africa, primarily due to a combination of its extensive geographical distribution, common occurrence and highly potent haemorrhagic and cytotoxic venom. Our investigation has revealed a remarkable degree of intra-species variation between pooled venom samples from different geographical origins across sub-Saharan Africa and Arabia, and within a group of individual specimens from the same origin in Nigeria as determined by a combination of immunological, biochemical and proteomic assays. We demonstrate significant quantitative and qualitative differences between B. arietans venom in terms of protein expression, immunogenicity and activity of snake venom metalloproteinases (SVMPs); toxins with a primary role in the haemorrhagic and tissue-necrotic pathologies suffered by envenomed victims. Specifically, we have identified a processed PII SVMP that exhibits striking inter-specimen variability.


Asunto(s)
Metaloproteasas/metabolismo , Venenos de Víboras/enzimología , Secuencia de Aminoácidos , Animales , Western Blotting , Reacciones Cruzadas , Electroforesis en Gel de Poliacrilamida , Metaloproteasas/inmunología , Datos de Secuencia Molecular , Especificidad de la Especie , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Viperidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...