Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem J ; 477(7): 1345-1362, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32207815

RESUMEN

We report the identification and characterization of a bacteriophage λ-encoded protein, NinH. Sequence homology suggests similarity between NinH and Fis, a bacterial nucleoid-associated protein (NAP) involved in numerous DNA topology manipulations, including chromosome condensation, transcriptional regulation and phage site-specific recombination. We find that NinH functions as a homodimer and is able to bind and bend double-stranded DNA in vitro. Furthermore, NinH shows a preference for a 15 bp signature sequence related to the degenerate consensus favored by Fis. Structural studies reinforced the proposed similarity to Fis and supported the identification of residues involved in DNA binding which were demonstrated experimentally. Overexpression of NinH proved toxic and this correlated with its capacity to associate with DNA. NinH is the first example of a phage-encoded Fis-like NAP that likely influences phage excision-integration reactions or bacterial gene expression.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Proteínas Bacterianas/química , Secuencia de Bases , Sitios de Unión , Simulación por Computador , ADN/metabolismo , ADN Viral/metabolismo , Proteínas de Unión al ADN/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Factor Proteico para Inverción de Estimulación/química , Factor Proteico para Inverción de Estimulación/genética , Expresión Génica , Proteínas Mutantes/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Multimerización de Proteína/genética , Proteínas Virales/química
2.
PLoS One ; 9(8): e102454, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25083707

RESUMEN

Genetic and biochemical evidence suggests that λ Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Redß recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its λ relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the λ Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/metabolismo , Familia de Multigenes , Recombinasas/genética , Recombinasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN , Orden Génico , Genoma Viral , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Recombinasas/química , Alineación de Secuencia , Proteínas Virales/química
3.
PLoS One ; 8(11): e78869, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24244379

RESUMEN

The Red system of bacteriophage λ is responsible for the genetic rearrangements that contribute to its rapid evolution and has been successfully harnessed as a research tool for genome manipulation. The key recombination component is Redß, a ring-shaped protein that facilitates annealing of complementary DNA strands. Redß shares functional similarities with the human Rad52 single-stranded DNA (ssDNA) annealing protein although their evolutionary relatedness is not well established. Alignment of Rad52 and Redß sequences shows an overall low level of homology, with 15% identity in the N-terminal core domains as well as important similarities with the Rad52 homolog Sak from phage ul36. Key conserved residues were chosen for mutagenesis and their impact on oligomer formation, ssDNA binding and annealing was probed. Two conserved regions were identified as sites important for binding ssDNA; a surface basic cluster and an intersubunit hydrophobic patch, consistent with findings for Rad52. Surprisingly, mutation of Redß residues in the basic cluster that in Rad52 are involved in ssDNA binding disrupted both oligomer formation and ssDNA binding. Mutations in the equivalent of the intersubunit hydrophobic patch in Rad52 did not affect Redß oligomerization but did impair DNA binding and annealing. We also identified a single amino acid substitution which had little effect on oligomerization and DNA binding but which inhibited DNA annealing, indicating that these two functions of Redß can be separated. Taken together, the results provide fresh insights into the structural basis for Redß function and the important role of quaternary structure.


Asunto(s)
Bacteriófago lambda/enzimología , ADN de Cadena Simple/química , ADN Viral/química , Recombinasas/química , Proteínas Virales/química , Bacteriófago lambda/genética , ADN de Cadena Simple/genética , ADN Viral/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Recombinasas/genética , Relación Estructura-Actividad , Proteínas Virales/genética
4.
Mol Microbiol ; 89(6): 1240-58, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23888987

RESUMEN

Viral and bacterial Holliday junction resolvases differ in specificity with the former typically being more promiscuous, acting on a variety of branched DNA substrates, while the latter exclusively targets Holliday junctions. We have determined the crystal structure of a RuvC resolvase from bacteriophage bIL67 to help identify features responsible for DNA branch discrimination. Comparisons between phage and bacterial RuvC structures revealed significant differences in the number and position of positively-charged residues in the outer sides of the junction binding cleft. Substitutions were generated in phage RuvC residues implicated in branch recognition and six were found to confer defects in Holliday junction and replication fork cleavage in vivo. Two mutants, R121A and R124A that flank the DNA binding site were purified and exhibited reduced in vitro binding to fork and linear duplex substrates relative to the wild-type, while retaining the ability to bind X junctions. Crucially, these two variants cleaved Holliday junctions with enhanced specificity and symmetry, a feature more akin to cellular RuvC resolvases. Thus, additional positive charges in the phage RuvC binding site apparently stabilize productive interactions with branched structures other than the canonical Holliday junction, a feature advantageous for viral DNA processing but deleterious for their cellular counterparts.


Asunto(s)
Bacteriófagos/enzimología , ADN Cruciforme/metabolismo , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Resolvasas de Unión Holliday/química , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
5.
J Mol Recognit ; 24(2): 333-40, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21360615

RESUMEN

Phage λ Orf substitutes for the activities of the Escherichia coli RecFOR proteins in vivo and is therefore implicated as a recombination mediator, encouraging the assembly of bacterial RecA onto single-stranded DNA (ssDNA) coated with SSB. Orf exists as a dimer in solution, associates with E. coli SSB and binds preferentially to ssDNA. To help identify interacting domains we analysed Orf and SSB proteins carrying mutations or truncations in the C-terminal region. A cluster of acidic residues at the carboxy-terminus of SSB is known to attract multiple protein partners to assist in DNA replication and repair. In this case an alternative domain must be utilized since Orf association with SSB was unaffected by an SSB113 point mutant (P176S) or removal of the last ten residues (ΔC10). Structurally the Orf C-terminus consists of a helix with a flexible tail that protrudes from each side of the dimer and could serve as a binding site for either SSB or DNA. Eliminating the six residue flexible tail (ΔC6) or the entire helix (ΔC19) had no significant impact on the Orf-SSB interaction. However, the OrfΔC6 protein exhibited reduced DNA binding, a feature shared by single amino acid substitutions within (W141F) or adjacent (R140A) to this region. The OrfΔC19 mutant bound poorly to DNA and secondary structure analysis in solution revealed that this truncation induces protein misfolding and aggregation. The results show that the carboxy-terminus of Orf is involved in nucleic acid recognition and also plays an unexpected role in maintaining structural integrity.


Asunto(s)
Bacteriófago lambda/enzimología , ADN/metabolismo , Recombinasas/química , Recombinasas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Cromatografía en Gel , Dicroismo Circular , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Cinética , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Eliminación de Secuencia , Soluciones , Relación Estructura-Actividad
6.
Bioorg Med Chem ; 14(14): 4731-9, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16581254

RESUMEN

Holliday junctions (HJs) are formed as transient DNA intermediates during site-specific and homologous recombination. Both of these genetic exchange pathways are critical for normal DNA metabolism and repair. Trapping HJs leads to bacterial cell death by preventing proper segregation of the resulting interlinked chromosomes. Macrocyclic peptides designed to target this intermediate were synthesized with the goal of identifying compounds with specificity for this unique molecular target. We discovered ten macrocycles, both hexameric and octameric peptides, capable of trapping HJs in vitro. Those macrocycles containing tyrosine residues proved most effective. These data demonstrate that C-2 symmetrical macrocycles offer excellent synthetic targets for the development of novel antibiotic agents. Furthermore, the active compounds identified provide valuable tools for probing different pathways of recombinational exchange.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , ADN Cruciforme/efectos de los fármacos , ADN Cruciforme/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Oligopéptidos/síntesis química , Oligopéptidos/farmacología , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Técnicas In Vitro , Sustancias Macromoleculares , Modelos Moleculares , Estructura Molecular , Conformación de Ácido Nucleico , Oligopéptidos/química , Péptidos Cíclicos/química , Conformación Proteica , Staphylococcus epidermidis/efectos de los fármacos
7.
Proc Natl Acad Sci U S A ; 102(32): 11260-5, 2005 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-16076958

RESUMEN

Genetic recombination in bacteriophage lambda relies on DNA end processing by Exo to expose 3'-tailed strands for annealing and exchange by beta protein. Phage lambda encodes an additional recombinase, Orf, which participates in the early stages of recombination by supplying a function equivalent to the Escherichia coli RecFOR complex. These host enzymes assist loading of the RecA strand exchange protein onto ssDNA coated with ssDNA-binding protein. In this study, we purified the Orf protein, analyzed its biochemical properties, and determined its crystal structure at 2.5 angstroms. The homodimeric Orf protein is arranged as a toroid with a shallow U-shaped cleft, lined with basic residues, running perpendicular to the central cavity. Orf binds DNA, favoring single-stranded over duplex and with no obvious preference for gapped, 3'-tailed, or 5'-tailed substrates. An interaction between Orf and ssDNA-binding protein was indicated by far Western analysis. The functional similarities between Orf and RecFOR are discussed in relation to the early steps of recombinational exchange and the interplay between phage and bacterial recombinases.


Asunto(s)
Bacteriófago lambda/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Moleculares , Recombinación Genética/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Western Blotting , Clonación Molecular , Cristalografía , Proteínas de Unión al ADN/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Proteínas Virales/genética
8.
Genetics ; 171(3): 873-83, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16020779

RESUMEN

In models of Escherichia coli recombination and DNA repair, the RuvABC complex directs the branch migration and resolution of Holliday junction DNA. To probe the validity of the E. coli paradigm, we examined the impact of mutations in DeltaruvAB and DeltarecU (a ruvC functional analog) on DNA repair. Under standard transformation conditions we failed to construct DeltaruvAB DeltarecG, DeltarecU DeltaruvAB, DeltarecU DeltarecG, or DeltarecU DeltarecJ strains. However, DeltaruvAB could be combined with addAB (recBCD), recF, recH, DeltarecS, DeltarecQ, and DeltarecJ mutations. The DeltaruvAB and DeltarecU mutations rendered cells extremely sensitive to DNA-damaging agents, although less sensitive than a DeltarecA strain. When damaged cells were analyzed, we found that RecU was recruited to defined double-stranded DNA breaks (DSBs) and colocalized with RecN. RecU localized to these centers at a later time point during DSB repair, and formation was dependent on RuvAB. In addition, expression of RecU in an E. coli ruvC mutant restored full resistance to UV light only when the ruvAB genes were present. The results demonstrate that, as with E. coli RuvABC, RuvAB targets RecU to recombination intermediates and that all three proteins are required for repair of DSBs arising from lesions in chromosomal DNA.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/fisiología , Daño del ADN/fisiología , ADN Helicasas/fisiología , Reparación del ADN/fisiología , ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/fisiología , Resolvasas de Unión Holliday/fisiología , Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Enzimas de Restricción del ADN/metabolismo , ADN Bacteriano/efectos de la radiación , ADN Cruciforme/fisiología , ADN Cruciforme/efectos de la radiación , Endodesoxirribonucleasas/genética , Escherichia coli/genética , Escherichia coli/efectos de la radiación , Proteínas de Escherichia coli/genética , Genes Reporteros , Mutación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rayos Ultravioleta
9.
Mol Microbiol ; 55(5): 1332-45, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15720544

RESUMEN

Resolution of Holliday junction recombination intermediates in most Gram-negative bacteria is accomplished by the RuvC endonuclease acting in concert with the RuvAB branch migration machinery. Gram-positive species, however, lack RuvC, with the exception of distantly related orthologues from bacteriophages infecting Lactococci and Streptococci. We have purified one of these proteins, 67RuvC, from Lactococcus lactis phage bIL67 and demonstrated that it functions as a Holliday structure resolvase. Differences in the sequence selectivity of resolution between 67RuvC and Escherichia coli RuvC were noted, although both enzymes prefer to cleave 3' of thymidine residues. However, unlike its cellular counterpart, 67RuvC readily binds and cleaves a variety of branched DNA substrates in addition to Holliday junctions. Plasmids expressing 67RuvC induce chromosomal breaks, probably as a consequence of replication fork cleavage, and cannot be recovered from recombination-defective E. coli strains. Despite these deleterious effects, 67RuvC constructs suppress the UV light sensitivity of ruvA, ruvAB and ruvABC mutant strains confirming that the phage protein mediates Holliday junction resolution in vivo. The characterization of 67RuvC offers a unique insight into how a Holliday junction-specific resolvase can evolve into a debranching endonuclease tailored to the requirements of phage recombination.


Asunto(s)
Bacteriófagos/enzimología , ADN Helicasas/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Lactococcus lactis/virología , Reparación del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Endodesoxirribonucleasas/química , Escherichia coli/genética , Proteínas de Escherichia coli , Evolución Molecular , Lactococcus lactis/genética
10.
J Mol Biol ; 340(4): 739-51, 2004 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-15223317

RESUMEN

Rap endonuclease targets recombinant joint molecules arising from phage lambda Red-mediated genetic exchange. Previous studies revealed that Rap nicks DNA at the branch point of synthetic Holliday junctions and other DNA structures with a branched component. However, on X junctions incorporating a three base-pair core of homology or with a fixed crossover, Rap failed to make the bilateral strand cleavages characteristic of a Holliday junction resolvase. Here, we demonstrate that Rap can mediate symmetrical resolution of 50 bp and chi Holliday structures containing larger homologous cores. On two different mobile 50 bp junctions Rap displays a weak preference for cleaving the phosphodiester backbone between 5'-GC dinucleotides. The products of resolution on both large and small DNA substrates can be sealed by T4 DNA ligase, confirming the formation of nicked duplexes. Rap protein was also assessed for its capacity to influence the global conformation of junctions in the presence or absence of magnesium ions. Unlike the known Holliday junction binding proteins, Rap does not affect the angle of duplex arms, implying an unorthodox mode of junction binding. The results demonstrate that Rap can function as a Holliday junction resolvase in addition to eliminating other branched structures that may arise during phage recombination.


Asunto(s)
Bacteriófago lambda/enzimología , Bacteriófago lambda/metabolismo , Endodesoxirribonucleasas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Bacteriófago lambda/genética , Secuencia de Bases , Sitios de Unión , Electroforesis en Gel de Agar , Resolvasas de Unión Holliday/química , Magnesio/farmacología , Manganeso/farmacología , Recombinación Genética , Relación Estructura-Actividad , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...