Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
bioRxiv ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39416139

RESUMEN

The sudden rise of the SARS-CoV-2 virus and the delay in the development of effective therapeutics to mitigate it made evident a need for ways to screen for compounds that can block infection and prevent further pathogenesis and spread. Yet, identifying effective drugs efficacious against viral infection and replication with minimal toxicity for the patient can be difficult. Monoclonal antibodies were shown to be effective, yet as the SARS-CoV-2 mutated, these antibodies became ineffective. Small molecule antivirals were identified using pseudovirus constructs to recapitulate infection in non-human cells, such as Vero E6 cells. However, the impact was limited due to poor translation of these compounds in the clinical setting. This is partly due to the lack of similarity of screening platforms to the in vivo physiology of the patient and partly because drugs effective in vitro showed dose-limiting toxicities. In this study, we performed two high-throughput screens in human lung adenocarcinoma cells with authentic SARS-CoV-2 virus to identify both monoclonal antibodies that neutralize the virus and clinically useful kinase inhibitors to block the virus and prioritize minimal host toxicity. Using high-content imaging combined with single-cell and multidimensional analysis, we identified antibodies and kinase inhibitors that reduce virus infection without affecting the host. Our screening technique uncovered novel antibodies and overlooked kinase inhibitors (i.e. PIK3i, mTORi, multiple RTKi) that could be effective against SARS-CoV-2 virus. Further characterization of these molecules will streamline the repurposing of compounds for the treatment of future pandemics and uncover novel mechanisms viruses use to hijack and infect host cells.

2.
Elife ; 122024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578680

RESUMEN

Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Humanos , Aterosclerosis/metabolismo , Cromatina/metabolismo , Enfermedad de la Arteria Coronaria/genética , Células Endoteliales/metabolismo , Estudio de Asociación del Genoma Completo
3.
Genome Biol ; 25(1): 78, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519979

RESUMEN

We develop a large-scale single-cell ATAC-seq method by combining Tn5-based pre-indexing with 10× Genomics barcoding, enabling the indexing of up to 200,000 nuclei across multiple samples in a single reaction. We profile 449,953 nuclei across diverse tissues, including the human cortex, mouse brain, human lung, mouse lung, mouse liver, and lung tissue from a club cell secretory protein knockout (CC16-/-) model. Our study of CC16-/- nuclei uncovers previously underappreciated technical artifacts derived from remnant 129 mouse strain genetic material, which cause profound cell-type-specific changes in regulatory elements near many genes, thereby confounding the interpretation of this commonly referenced mouse model.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Animales , Ratones , Humanos , Cromatina/metabolismo , Núcleo Celular/genética , Secuencias Reguladoras de Ácidos Nucleicos
4.
Mol Metab ; 81: 101888, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307385

RESUMEN

Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in mediating histone lactoylation and inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH and histone lactoylation with a corresponding potentiation of the inflammatory response when exposed to lipopolysaccharides. An analysis of chromatin accessibility shows that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state; upon stimulation, however, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is the primary driving factor facilitating histone lactoylation and a major contributor to inflammatory signaling.


Asunto(s)
Histonas , Lactoilglutatión Liasa , Histonas/metabolismo , Cromatina/metabolismo , Glucólisis , Lactoilglutatión Liasa/metabolismo , Ácido Láctico/metabolismo , Macrófagos/metabolismo
5.
bioRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-37066416

RESUMEN

Objective: Endothelial cells (ECs), macrophages, and vascular smooth muscle cells (VSMCs) are major cell types in atherosclerosis progression, and heterogeneity in EC sub-phenotypes are becoming increasingly appreciated. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Approach and Results: To create an in vitro dataset to study human EC heterogeneity, multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs). To model pro-inflammatory and activating environments characteristic of the atherosclerotic microenvironment in vitro, HAECs from at least three donors were exposed to three distinct perturbations with their respective controls: transforming growth factor beta-2 (TGFB2), interleukin-1 beta (IL1B), and siRNA-mediated knock-down of the endothelial transcription factor ERG (siERG). To form a comprehensive in vivo/ex vivo dataset of human atherosclerotic cell types, meta-analysis of single cell transcriptomes across 17 human arterial specimens was performed. Two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and in vivo cell profiles. HAEC cultures were reproducibly populated by 4 major clusters with distinct pathway enrichment profiles: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Exposure to siERG, IL1B or TGFB2 elicited mostly distinct transcriptional and accessible chromatin responses. EC1 and EC2, the most canonically 'healthy' EC populations, were affected predominantly by siERG; the activated cluster EC3 was most responsive to IL1B; and the mesenchymal population EC4 was most affected by TGFB2. Quantitative comparisons between in vitro and in vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated SNPs from GWAS, suggesting these cell phenotypes harbor CAD-modulating mechanisms. Conclusion: Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here, which have been reported by others to be involved in the pathogenesis of atherosclerosis as well as induce endothelial-to-mesenchymal transition (EndMT), only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and in vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.

6.
Front Immunol ; 14: 1277582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053993

RESUMEN

Rationale: CC16 (Club Cell Secretory Protein) is a protein produced by club cells and other non-ciliated epithelial cells within the lungs. CC16 has been shown to protect against the development of obstructive lung diseases and attenuate pulmonary pathogen burden. Despite recent advances in understanding CC16 effects in circulation, the biological mechanisms of CC16 in pulmonary epithelial responses have not been elucidated. Objectives: We sought to determine if CC16 deficiency impairs epithelial-driven host responses and identify novel receptors expressed within the pulmonary epithelium through which CC16 imparts activity. Methods: We utilized mass spectrometry and quantitative proteomics to investigate how CC16 deficiency impacts apically secreted pulmonary epithelial proteins. Mouse tracheal epithelial cells (MTECS), human nasal epithelial cells (HNECs) and mice were studied in naïve conditions and after Mp challenge. Measurements and main results: We identified 8 antimicrobial proteins significantly decreased by CC16-/- MTECS, 6 of which were validated by mRNA expression in Severe Asthma Research Program (SARP) cohorts. Short Palate Lung and Nasal Epithelial Clone 1 (SPLUNC1) was the most differentially expressed protein (66-fold) and was the focus of this study. Using a combination of MTECs and HNECs, we found that CC16 enhances pulmonary epithelial-driven SPLUNC1 expression via signaling through the receptor complex Very Late Antigen-2 (VLA-2) and that rCC16 given to mice enhances pulmonary SPLUNC1 production and decreases Mycoplasma pneumoniae (Mp) burden. Likewise, rSPLUNC1 results in decreased Mp burden in mice lacking CC16 mice. The VLA-2 integrin binding site within rCC16 is necessary for induction of SPLUNC1 and the reduction in Mp burden. Conclusion: Our findings demonstrate a novel role for CC16 in epithelial-driven host defense by up-regulating antimicrobials and define a novel epithelial receptor for CC16, VLA-2, through which signaling is necessary for enhanced SPLUNC1 production.


Asunto(s)
Asma , Integrina alfa2beta1 , Animales , Humanos , Ratones , Asma/metabolismo , Integrina alfa2beta1/metabolismo , Pulmón/metabolismo , Mycoplasma pneumoniae , Transducción de Señal
7.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873172

RESUMEN

Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli. Lactoylation is also generated through a non-enzymatic S-to-N acyltransfer from the glyoxalase cycle intermediate, lactoylglutathione (LGSH). Here, we report a regulatory role for LGSH in inflammatory signaling. In the absence of the primary LGSH hydrolase, glyoxalase 2 (GLO2), RAW264.7 macrophages display significant elevations in LGSH, while demonstrating a potentiated inflammatory response when exposed to lipopolysaccharides, corresponding with a rise in histone lactoylation. Interestingly, our data demonstrate that lactoylation is associated with more compacted chromatin than acetylation in an unstimulated state, however, upon stimulation, regions of the genome associated with lactoylation become markedly more accessible. Lastly, we demonstrate a spontaneous S-to-S acyltransfer of lactate from LGSH to CoA, yielding lactoyl-CoA. This represents the first known mechanism for the generation of this metabolite. Collectively, these data suggest that LGSH, and not intracellular lactate, is a primary contributing factor facilitating the inflammatory response.

8.
Am J Respir Cell Mol Biol ; 69(6): 689-697, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37643399

RESUMEN

Single-cell genomic technologies hold great potential to advance our understanding of lung development and disease. A major limitation lies in accessing intact cells from primary lung tissues for profiling human airway health. Sampling methods such as endotracheal aspiration that are compatible with clinical interventions could enable longitudinal studies, the enrollment of large cohorts, and the development of novel diagnostics. To explore single-cell RNA sequencing profiling of the cell types present at birth in the airway lumen of extremely premature neonates (<28 wk gestation), we isolated cells from endotracheal aspirates collected from intubated neonates within the first hour after birth. We generated data on 10 subjects, providing a rich view of airway luminal biology at a critical developmental period. Our results show that cells present in the airways of premature neonates primarily represent a continuum of myeloid differentiation, including fetal monocytes (25% of total), intermediate myeloid populations (48%), and macrophages (2.6%). Applying trajectory analysis to the myeloid populations, we identified two trajectories consistent with the developmental stages of interstitial and alveolar macrophages, as well as a third trajectory presenting an alternative pathway bridging the distinct macrophage precursors. The three trajectories share many dynamic genes (N = 5,451), but also have distinct transcriptional changes (259 alveolar-specific, 666 interstitial-specific, and 285 bridging-specific). Overall, our results define cells isolated within the so-called "golden hour of birth" in extremely premature neonate airways, representing complex lung biology, and can be used in studies of human development and disease.


Asunto(s)
Pulmón , Macrófagos Alveolares , Recién Nacido , Humanos , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos , Monocitos , Diferenciación Celular
9.
bioRxiv ; 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37214915

RESUMEN

Gene regulatory networks, which control gene expression patterns in development and in response to stimuli, use regulatory logic modules to coordinate inputs and outputs. One example of a regulatory logic module is the gene regulatory cascade (GRC), where a series of transcription factor genes turn on in order. Synthetic biologists have derived artificial systems that encode regulatory rules, including GRCs. Furthermore, the development of single-cell approaches has enabled the discovery of gene regulatory modules in a variety of experimental settings. However, the tools available for validating these observations remain limited. Based on a synthetic GRC using DNA cutting-defective Cas9 (dCas9), we designed and implemented an alternative synthetic GRC utilizing DNA cutting-defective Cas12a (dCas12a). Comparing the ability of these two systems to express a fluorescent reporter, the dCas9 system was initially more active, while the dCas12a system was more streamlined. Investigating the influence of individual components of the systems identified nuclear localization as a major driver of differences in activity. Improving nuclear localization for the dCas12a system resulted in 1.5-fold more reporter-positive cells and a 15-fold increase in reporter intensity relative to the dCas9 system. We call this optimized system the "Synthetic Gene Regulatory Network" (SGRN, pronounced "sojourn").

10.
BMC Genomics ; 23(1): 214, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35296236

RESUMEN

BACKGROUND: The "Assay for Transposase Accessible Chromatin sequencing" (ATAC-seq) is an efficient and easy to implement protocol to measure chromatin accessibility that has been widely used in multiple applications studying gene regulation. While several modifications or variants of the protocol have been published since it was first described, there has not yet been an extensive evaluation of the effects of specific protocol choices head-to-head in a consistent experimental setting. In this study, we tested multiple protocol options for major ATAC-seq components (including three reaction buffers, two reaction temperatures, two enzyme sources, and the use of either native or fixed nuclei) in a well-characterized cell line. With all possible combinations of components, we created 24 experimental conditions with four replicates for each (a total of 96 samples). In addition, we tested the 12 native conditions in a primary sample type (mouse lung tissue) with two different input amounts. Through these extensive comparisons, we were able to observe the effect of different ATAC-seq conditions on data quality and to examine the utility and potential redundancy of various quality metrics. RESULTS: In general, native samples yielded more peaks (particularly at loci not overlapping transcription start sites) than fixed samples, and the temperature at which the enzymatic reaction was carried out had a major impact on data quality metrics for both fixed and native nuclei. However, the effect of various conditions tested was not always consistent between the native and fixed samples. For example, the Nextera and Omni buffers were largely interchangeable across all other conditions, while the THS buffer resulted in markedly different profiles in native samples. In-house and commercial enzymes performed similarly. CONCLUSIONS: We found that the relationship between commonly used measures of library quality differed across temperature and fixation, and so evaluating multiple metrics in assessing the quality of a sample is recommended. Notably, we also found that these choices can bias the functional class of elements profiled and so we recommend evaluating several formulations in any new experiments. Finally, we hope the ATAC-seq workflow formulated in this study on crosslinked samples will help to profile archival clinical specimens.


Asunto(s)
Núcleo Celular , Secuenciación de Inmunoprecipitación de Cromatina , Animales , Núcleo Celular/genética , Cromatina/genética , Formaldehído , Ratones , Análisis de Secuencia de ADN/métodos
11.
Sci Rep ; 12(1): 3047, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197492

RESUMEN

The ongoing SARS-CoV-2 pandemic and subsequent demand for viral testing has led to issues in scaling diagnostic lab efforts and in securing basic supplies for collection and processing of samples. This has motivated efforts by the scientific community to establish improved protocols that are more scalable, less resource intensive, and less expensive. One such developmental effort has resulted in an assay called "Swab-Seq", so named because it was originally developed to work with dry nasal swab samples. The existing gold standard test consists of RNA extracted from a nasopharyngeal (NP) swab that is subjected to quantitative reverse transcription polymerase chain reaction (qRT-PCR). Swab-Seq adapts this method to a next-generation sequencing readout. By pairing this modification with extraction-free sampling techniques, Swab-Seq achieves high scalability, low cost per sample, and a reasonable turnaround time. We evaluated the effectiveness of this assay in a community surveillance setting by testing samples collected from both symptomatic and asymptomatic individuals using the traditional NP swab. In addition, we evaluated extraction-free sampling techniques (both saliva and saline mouth gargle samples). We found the assay to be as clinically sensitive as the qRT-PCR assay, adaptable to multiple sample types, and able to easily accommodate hundreds of samples at a time. We thus provide independent validation of Swab-Seq and extend its utility regarding sample type and sample stability. Assays of this type greatly expand the possibility of routine, noninvasive, repeated testing of asymptomatic individuals suitable for current and potential future needs.


Asunto(s)
COVID-19
12.
Cell Rep ; 35(13): 109293, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192535

RESUMEN

While the immediate and transitory response of breast cancer cells to pathological stiffness in their native microenvironment has been well explored, it remains unclear how stiffness-induced phenotypes are maintained over time after cancer cell dissemination in vivo. Here, we show that fibrotic-like matrix stiffness promotes distinct metastatic phenotypes in cancer cells, which are preserved after transition to softer microenvironments, such as bone marrow. Using differential gene expression analysis of stiffness-responsive breast cancer cells, we establish a multigenic score of mechanical conditioning (MeCo) and find that it is associated with bone metastasis in patients with breast cancer. The maintenance of mechanical conditioning is regulated by RUNX2, an osteogenic transcription factor, established driver of bone metastasis, and mitotic bookmarker that preserves chromatin accessibility at target gene loci. Using genetic and functional approaches, we demonstrate that mechanical conditioning maintenance can be simulated, repressed, or extended, with corresponding changes in bone metastatic potential.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Fenómenos Biomecánicos , Médula Ósea/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Mecanotransducción Celular , Invasividad Neoplásica , Microambiente Tumoral
13.
Genome Res ; 31(10): 1952-1969, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33888511

RESUMEN

Recently developed single-cell technologies allow researchers to characterize cell states at ever greater resolution and scale. Caenorhabditis elegans is a particularly tractable system for studying development, and recent single-cell RNA-seq studies characterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene expression patterns give insight about gene function and into the biochemical state of different cell types; recent advances in other single-cell genomics technologies can now also characterize the regulatory context of the genome that gives rise to these gene expression levels at a single-cell resolution. To explore the regulatory DNA of individual cell types in C. elegans, we collected single-cell chromatin accessibility data using the sci-ATAC-seq assay in L2 larvae to match the available single-cell RNA-seq data set. By using a novel implementation of the latent Dirichlet allocation algorithm, we identify 37 clusters of cells that correspond to different cell types in the worm, providing new maps of putative cell type-specific gene regulatory sites, with promise for better understanding of cellular differentiation and gene regulation.


Asunto(s)
Caenorhabditis elegans , Cromatina , Animales , Caenorhabditis elegans/genética , Cromatina/genética , Secuenciación de Inmunoprecipitación de Cromatina , ADN/genética , Regulación de la Expresión Génica
14.
Science ; 370(6518)2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33184180

RESUMEN

The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type-specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type-specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.


Asunto(s)
Cromatina/metabolismo , Feto/citología , Feto/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Análisis de la Célula Individual , Atlas como Asunto , Humanos , Neuronas/metabolismo , Factores de Transcripción/metabolismo
16.
Mol Metab ; 32: 109-121, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32029221

RESUMEN

OBJECTIVE: Type 2 diabetes (T2D) is a complex disease characterized by pancreatic islet dysfunction, insulin resistance, and disruption of blood glucose levels. Genome-wide association studies (GWAS) have identified > 400 independent signals that encode genetic predisposition. More than 90% of associated single-nucleotide polymorphisms (SNPs) localize to non-coding regions and are enriched in chromatin-defined islet enhancer elements, indicating a strong transcriptional regulatory component to disease susceptibility. Pancreatic islets are a mixture of cell types that express distinct hormonal programs, so each cell type may contribute differentially to the underlying regulatory processes that modulate T2D-associated transcriptional circuits. Existing chromatin profiling methods such as ATAC-seq and DNase-seq, applied to islets in bulk, produce aggregate profiles that mask important cellular and regulatory heterogeneity. METHODS: We present genome-wide single-cell chromatin accessibility profiles in >1,600 cells derived from a human pancreatic islet sample using single-cell combinatorial indexing ATAC-seq (sci-ATAC-seq). We also developed a deep learning model based on U-Net architecture to accurately predict open chromatin peak calls in rare cell populations. RESULTS: We show that sci-ATAC-seq profiles allow us to deconvolve alpha, beta, and delta cell populations and identify cell-type-specific regulatory signatures underlying T2D. Particularly, T2D GWAS SNPs are significantly enriched in beta cell-specific and across cell-type shared islet open chromatin, but not in alpha or delta cell-specific open chromatin. We also demonstrate, using less abundant delta cells, that deep learning models can improve signal recovery and feature reconstruction of rarer cell populations. Finally, we use co-accessibility measures to nominate the cell-specific target genes at 104 non-coding T2D GWAS signals. CONCLUSIONS: Collectively, we identify the islet cell type of action across genetic signals of T2D predisposition and provide higher-resolution mechanistic insights into genetically encoded risk pathways.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Aprendizaje Profundo , Diabetes Mellitus Tipo 2/genética , Islotes Pancreáticos/patología , Análisis de la Célula Individual , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Perfilación de la Expresión Génica , Humanos , Islotes Pancreáticos/metabolismo , Polimorfismo de Nucleótido Simple/genética
17.
J Lipid Res ; 60(4): 869-879, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30598475

RESUMEN

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), the protein that shuttles LPL to the capillary lumen, is essential for plasma triglyceride metabolism. When GPIHBP1 is absent, LPL remains stranded within the interstitial spaces and plasma triglyceride hydrolysis is impaired, resulting in severe hypertriglyceridemia. While the functions of GPIHBP1 in intravascular lipolysis are reasonably well understood, no one has yet identified DNA sequences regulating GPIHBP1 expression. In the current studies, we identified an enhancer element located ∼3.6 kb upstream from exon 1 of mouse Gpihbp1. To examine the importance of the enhancer, we used CRISPR/Cas9 genome editing to create mice lacking the enhancer (Gpihbp1Enh/Enh). Removing the enhancer reduced Gpihbp1 expression by >90% in the liver and by ∼50% in heart and brown adipose tissue. The reduced expression of GPIHBP1 was insufficient to prevent LPL from reaching the capillary lumen, and it did not lead to hypertriglyceridemia-even when mice were fed a high-fat diet. Compound heterozygotes (Gpihbp1Enh/- mice) displayed further reductions in Gpihbp1 expression and exhibited partial mislocalization of LPL (increased amounts of LPL within the interstitial spaces of the heart), but the plasma triglyceride levels were not perturbed. The enhancer element that we identified represents the first insight into DNA sequences controlling Gpihbp1 expression.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Lipoproteína Lipasa/metabolismo , Receptores de Lipoproteína/genética , Animales , Sistemas CRISPR-Cas/genética , Cromatina/genética , Corazón , Humanos , Ratones , Ratones Endogámicos , Receptores de Lipoproteína/análisis , Receptores de Lipoproteína/metabolismo , Análisis de Secuencia de ADN , Triglicéridos/sangre , Triglicéridos/metabolismo
18.
Science ; 361(6409): 1380-1385, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30166440

RESUMEN

Although we can increasingly measure transcription, chromatin, methylation, and other aspects of molecular biology at single-cell resolution, most assays survey only one aspect of cellular biology. Here we describe sci-CAR, a combinatorial indexing-based coassay that jointly profiles chromatin accessibility and mRNA (CAR) in each of thousands of single cells. As a proof of concept, we apply sci-CAR to 4825 cells, including a time series of dexamethasone treatment, as well as to 11,296 cells from the adult mouse kidney. With the resulting data, we compare the pseudotemporal dynamics of chromatin accessibility and gene expression, reconstruct the chromatin accessibility profiles of cell types defined by RNA profiles, and link cis-regulatory sites to their target genes on the basis of the covariance of chromatin accessibility and transcription across large numbers of single cells.


Asunto(s)
Cromatina/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Genómica/métodos , Análisis de la Célula Individual/métodos , Células A549 , Animales , Dexametasona/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Ratones , Células 3T3 NIH , Elementos Reguladores de la Transcripción/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
19.
Cell ; 174(5): 1309-1324.e18, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30078704

RESUMEN

We applied a combinatorial indexing assay, sci-ATAC-seq, to profile genome-wide chromatin accessibility in ∼100,000 single cells from 13 adult mouse tissues. We identify 85 distinct patterns of chromatin accessibility, most of which can be assigned to cell types, and ∼400,000 differentially accessible elements. We use these data to link regulatory elements to their target genes, to define the transcription factor grammar specifying each cell type, and to discover in vivo correlates of heterogeneity in accessibility within cell types. We develop a technique for mapping single cell gene expression data to single-cell chromatin accessibility data, facilitating the comparison of atlases. By intersecting mouse chromatin accessibility with human genome-wide association summary statistics, we identify cell-type-specific enrichments of the heritability signal for hundreds of complex traits. These data define the in vivo landscape of the regulatory genome for common mammalian cell types at single-cell resolution.


Asunto(s)
Cromatina/química , Análisis de la Célula Individual/métodos , Animales , Análisis por Conglomerados , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Mamíferos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción
20.
Mol Cell ; 71(5): 858-871.e8, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30078726

RESUMEN

Linking regulatory DNA elements to their target genes, which may be located hundreds of kilobases away, remains challenging. Here, we introduce Cicero, an algorithm that identifies co-accessible pairs of DNA elements using single-cell chromatin accessibility data and so connects regulatory elements to their putative target genes. We apply Cicero to investigate how dynamically accessible elements orchestrate gene regulation in differentiating myoblasts. Groups of Cicero-linked regulatory elements meet criteria of "chromatin hubs"-they are enriched for physical proximity, interact with a common set of transcription factors, and undergo coordinated changes in histone marks that are predictive of changes in gene expression. Pseudotemporal analysis revealed that most DNA elements remain in chromatin hubs throughout differentiation. A subset of elements bound by MYOD1 in myoblasts exhibit early opening in a PBX1- and MEIS1-dependent manner. Our strategy can be applied to dissect the architecture, sequence determinants, and mechanisms of cis-regulation on a genome-wide scale.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , ADN/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Adolescente , Diferenciación Celular/genética , Femenino , Genes Homeobox/genética , Histonas/genética , Humanos , Mioblastos/fisiología , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...