Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Endocrinol Metab ; 321(4): E464-E478, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34396783

RESUMEN

Obesity is associated with dyslipidemia, ectopic lipid deposition, and insulin resistance. In mice, the global or adipose-specific loss of function of the protein angiopoietin-like 4 (ANGPTL4) leads to decreased plasma triglyceride levels, enhanced adipose triglyceride uptake, and protection from high-fat diet (HFD)-induced glucose intolerance. ANGPTL4 is also expressed highly in the liver, but the role of liver-derived ANGPTL4 is unclear. The goal of this study was to determine the contribution of hepatocyte ANGPTL4 to triglyceride and glucose homeostasis in mice during a high-fat diet challenge. We generated hepatocyte-specific ANGPTL4 deficient (Angptl4LivKO) mice, fed them a 60% kcal/fat diet (HFD) for 6 mo and assessed triglyceride, liver, and glucose metabolic phenotypes. We also explored the effects of prolonged fasting on Angptl4LivKO mice. The loss of hepatocyte-derived ANGPTL4 led to no major changes in triglyceride partitioning or lipoprotein lipase activity compared with control mice. Interestingly, although there was no difference in fasting plasma triglyceride levels after a 6 h fast, after an 18-h fast, normal chow diet-fed Angptl4LivKO mice had lower triglyceride levels than control mice. On a HFD, Angptl4LivKO mice initially showed no difference in glucose tolerance and insulin sensitivity, but improved glucose tolerance emerged in these mice after 6 mo on HFD. Our data suggest that hepatocyte ANGPTL4 does not directly regulate triglyceride partitioning, but that loss of liver-derived ANGPTL4 may be protective from HFD-induced glucose intolerance and influence plasma triglyceride (TG) metabolism during prolonged fasting.NEW & NOTEWORTHY1) Angiopoietin-like 4 deficiency in hepatocytes (Angptl4LivKO) does not improve triglyceride phenotypes during high-fat feeding. 2) Angptl4LivKO mice have improved glucose tolerance after chronic high-fat diet. 3) Angptl4LivKO mice have decreased fasting plasma triglyceride levels after an 18-h fast, but not after a 6-h fast.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/fisiología , Dieta Alta en Grasa , Intolerancia a la Glucosa/prevención & control , Resistencia a la Insulina , Hígado/metabolismo , Triglicéridos/sangre , Animales , Ayuno , Femenino , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
2.
Sci Rep ; 11(1): 7873, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846453

RESUMEN

Elevated plasma triglyceride levels are associated with metabolic disease. Angiopoietin-like protein 4 (ANGPTL4) regulates plasma triglyceride levels by inhibiting lipoprotein lipase (LPL). Our aim was to investigate the role of adipocyte-specific deficiency of ANGPTL4 in mice during high fat diet feeding. Adipocyte-specific ANGPTL4 deficient mice were fed a high fat diet (60% kCal from fat) for either 12 weeks or 6 months. We performed plasma metabolic measurements, triglyceride clearance and uptake assays, LPL activity assays, and assessed glucose homeostasis. Mice lacking adipocyte ANGPTL4 recapitulated the triglyceride phenotypes of whole-body ANGPTL4 deficiency, including increased adipose LPL activity, lower plasma triglyceride levels, and increased uptake of triglycerides into adipose tissue. When fed a high fat diet (HFD), these mice continued to display enhanced adipose LPL activity and initially had improved glucose and insulin sensitivity. However, after 6 months on HFD, the improvements in glucose homeostasis were largely lost. Moreover, despite higher adipose LPL activity levels, mice lacking adipocyte ANGPTL4 no longer had increased triglyceride uptake into adipose compared to littermate controls after chronic high-fat feeding. These observations suggest that after chronic high-fat feeding LPL is no longer rate-limiting for triglyceride delivery to adipocytes. We conclude that while adipocyte-derived ANGPTL4 is an important regulator of plasma triglyceride levels and triglyceride partitioning under normal diet conditions, its role is diminished after chronic high-fat feeding.


Asunto(s)
Tejido Adiposo/metabolismo , Proteína 4 Similar a la Angiopoyetina/fisiología , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Triglicéridos/sangre , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Noqueados
3.
Nat Metab ; 2(10): 1149-1162, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32958938

RESUMEN

Despite the crucial roles of lipids in metabolism, we are still at the early stages of comprehensively annotating lipid species and their genetic basis. Mass spectrometry-based discovery lipidomics offers the potential to globally survey lipids and their relative abundances in various biological samples. To discover the genetics of lipid features obtained through high-resolution liquid chromatography-tandem mass spectrometry, we analysed liver and plasma from 384 diversity outbred mice, and quantified 3,283 molecular features. These features were mapped to 5,622 lipid quantitative trait loci and compiled into a public web resource termed LipidGenie. The data are cross-referenced to the human genome and offer a bridge between genetic associations in humans and mice. Harnessing this resource, we used genome-lipid association data as an additional aid to identify a number of lipids, for example gangliosides through their association with B4galnt1, and found evidence for a group of sex-specific phosphatidylcholines through their shared locus. Finally, LipidGenie's ability to query either mass or gene-centric terms suggests acyl-chain-specific functions for proteins of the ABHD family.


Asunto(s)
Mapeo Cromosómico , Genoma , Metabolismo de los Lípidos/genética , Lipidómica , Lípidos/química , Lípidos/genética , Animales , Gangliósidos/metabolismo , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Hidrolasas/genética , Ratones , Ratones Endogámicos C57BL , Fosfatidilcolinas/metabolismo , Fosfolipasas A2/genética , Plásmidos/genética , Caracteres Sexuales
4.
Elife ; 82019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31305240

RESUMEN

Metabolic cycles are a fundamental element of cellular and organismal function. Among the most critical in higher organisms is the Cori Cycle, the systemic cycling between lactate and glucose. Here, skeletal muscle-specific Mitochondrial Pyruvate Carrier (MPC) deletion in mice diverted pyruvate into circulating lactate. This switch disinhibited muscle fatty acid oxidation and drove Cori Cycling that contributed to increased energy expenditure. Loss of muscle MPC activity led to strikingly decreased adiposity with complete muscle mass and strength retention. Notably, despite decreasing muscle glucose oxidation, muscle MPC disruption increased muscle glucose uptake and whole-body insulin sensitivity. Furthermore, chronic and acute muscle MPC deletion accelerated fat mass loss on a normal diet after high fat diet-induced obesity. Our results illuminate the role of the skeletal muscle MPC as a whole-body carbon flux control point. They highlight the potential utility of modulating muscle pyruvate utilization to ameliorate obesity and type 2 diabetes.


Asunto(s)
Glucosa/metabolismo , Redes y Vías Metabólicas , Mitocondrias Musculares/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Delgadez , Adiposidad , Animales , Proteínas de Transporte de Anión/deficiencia , Eliminación de Gen , Lactatos/metabolismo , Ratones , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Transportadores de Ácidos Monocarboxílicos/deficiencia , Fuerza Muscular
5.
J Lipid Res ; 59(7): 1230-1243, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29739862

RESUMEN

Mice lacking glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) are unable to traffic LPL to the vascular lumen. Thus, triglyceride (TG) clearance is severely blunted, and mice are extremely hypertriglyceridemic. Paradoxically, mice lacking both GPIHBP1 and the LPL regulator, angiopoietin-like 4 (ANGPTL4), are far less hypertriglyceridemic. We sought to determine the mechanism by which Angptl4-/-Gpihbp1-/- double-knockout mice clear plasma TGs. We confirmed that, on a normal chow diet, plasma TG levels were lower in Angptl4-/-Gpihbp1-/- mice than in Gpihbp1-/- mice; however, the difference disappeared with administration of a high-fat diet. Although LPL remained mislocalized in double-knockout mice, plasma TG clearance in brown adipose tissue (BAT) increased compared with Gpihbp1-/- mice. Whole lipoprotein uptake was observed in the BAT of both Gpihbp1-/- and Angptl4-/-Gpihbp1-/- mice, but BAT lipase activity was significantly higher in the double-knockout mice. We conclude that Angptl4-/-Gpihbp1-/- mice clear plasma TGs primarily through a slow and noncanonical pathway that includes the uptake of whole lipoprotein particles.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina/deficiencia , Receptores de Lipoproteína/deficiencia , Triglicéridos/sangre , Tejido Adiposo Pardo/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Regulación Enzimológica de la Expresión Génica , Técnicas de Inactivación de Genes , Lipoproteína Lipasa/metabolismo , Ratones , Transporte de Proteínas , Receptores de Lipoproteína/genética , Receptores de Lipoproteína/metabolismo
6.
Mol Metab ; 6(10): 1137-1149, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031715

RESUMEN

OBJECTIVE: Several members of the angiopoietin-like (ANGPTL) family of proteins, including ANGPTL3 and ANGPTL8, regulate lipoprotein lipase (LPL) activity. Deficiency in either ANGPTL3 or ANGPTL8 reduces plasma triglyceride levels and increases LPL activity, whereas overexpression of either protein does the opposite. Recent studies suggest that ANGPTL8 may functionally interact with ANGPTL3 to alter clearance of plasma triglycerides; however, the nature of this interaction has remained elusive. We tested the hypothesis that ANGPTL8 forms a complex with ANGPTL3 and that this complex is necessary for the inhibition of vascular LPL by ANGPTL3. METHODS: We analyzed the interactions of ANGPTL3 and ANGPTL8 with each other and with LPL using co-immunoprecipitation, western blotting, lipase activity assays, and the NanoBiT split-luciferase system. We also used adenovirus injection to overexpress ANGPTL3 in mice that lacked ANGPTL8. RESULTS: We found that ANGPTL3 or ANGPTL8 alone could only inhibit LPL at concentrations that far exceeded physiological levels, especially when LPL was bound to its endothelial cell receptor/transporter GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1). Physical interaction was observed between ANGPTL3 and ANGPTL8 when the proteins were co-expressed, and co-expression with ANGPTL3 greatly enhanced the secretion of ANGPTL8. Importantly, ANGPTL3-ANGPTL8 complexes had a dramatically increased ability to inhibit LPL compared to either protein alone. Adenovirus experiments showed that 2-fold overexpression of ANGPTL3 significantly increased plasma triglycerides only in the presence of ANGPTL8. Protein interaction assays showed that ANGPTL8 greatly increased the ability of ANGPTL3 to bind LPL. CONCLUSIONS: Together, these data indicate that ANGPTL8 binds to ANGPTL3 and that this complex is necessary for ANGPTL3 to efficiently bind and inhibit LPL.


Asunto(s)
Proteínas Similares a la Angiopoyetina/metabolismo , Lipoproteína Lipasa/antagonistas & inhibidores , Lipoproteína Lipasa/metabolismo , Proteína 3 Similar a la Angiopoyetina , Proteína 8 Similar a la Angiopoyetina , Angiopoyetinas/química , Animales , Células CHO , Proteínas Portadoras/metabolismo , Cricetulus , Células Endoteliales/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Hormonas Peptídicas/metabolismo , Unión Proteica , Ratas , Receptores de Lipoproteína/metabolismo
7.
Mol Metab ; 6(8): 809-818, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28752045

RESUMEN

OBJECTIVE: Angiopoietin-like 4 (ANGPTL4) is a fasting-induced inhibitor of lipoprotein lipase (LPL) and a regulator of plasma triglyceride metabolism. Here, we examined the kinetics of Angptl4 induction and tested the hypothesis that ANGPTL4 functions physiologically to reduce triglyceride delivery to adipose tissue during nutrient deprivation. METHODS: Gene expression, LPL activity, and triglyceride uptake were examined in fasted and fed wild-type and Angptl4-/- mice. RESULTS: Angptl4 was strongly induced early in fasting, and this induction was suppressed in mice with access to food during the light cycle. Fasted Angptl4-/- mice manifested increased LPL activity and triglyceride uptake in adipose tissue compared to wild-type mice. CONCLUSIONS: Angptl4 is induced early in fasting to divert uptake of fatty acids and triglycerides away from adipose tissues.


Asunto(s)
Tejido Adiposo/metabolismo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Grasas de la Dieta/metabolismo , Ayuno/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...