Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 65(19): 12895-12924, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36127295

RESUMEN

General control nonderepressible 2 (GCN2) protein kinase is a cellular stress sensor within the tumor microenvironment (TME), whose signaling cascade has been proposed to contribute to immune escape in tumors. Herein, we report the discovery of cell-potent GCN2 inhibitors with excellent selectivity against its closely related Integrated Stress Response (ISR) family members heme-regulated inhibitor kinase (HRI), protein kinase R (PKR), and (PKR)-like endoplasmic reticulum kinase (PERK), as well as good kinome-wide selectivity and favorable PK. In mice, compound 39 engages GCN2 at levels ≥80% with an oral dose of 15 mg/kg BID. We also demonstrate the ability of compound 39 to alleviate MDSC-related T cell suppression and restore T cell proliferation, similar to the effect seen in MDSCs from GCN2 knockout mice. In the LL2 syngeneic mouse model, compound 39 demonstrates significant tumor growth inhibition (TGI) as a single agent. Furthermore, TGI mediated by anti-VEGFR was enhanced by treatment with compound 39 demonstrating the complementarity of these two mechanisms.


Asunto(s)
Células Supresoras de Origen Mieloide , eIF-2 Quinasa , Animales , Hemo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas , Linfocitos T/metabolismo , eIF-2 Quinasa/metabolismo
2.
PLoS Pathog ; 18(1): e1010200, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025968

RESUMEN

The Epstein-Barr Virus (EBV) is involved in the etiology of multiple hematologic and epithelial human cancers. EBV+ tumors employ multiple immune escape mechanisms, including the recruitment of immunosuppressive regulatory T cells (Treg). Here, we show some EBV+ tumor cells express high levels of the chemokines CCL17 and CCL22 both in vitro and in vivo and that this expression mirrors the expression levels of expression of the EBV LMP1 gene in vitro. Patient samples from lymphoblastic (Hodgkin lymphoma) and epithelial (nasopharyngeal carcinoma; NPC) EBV+ tumors revealed CCL17 and CCL22 expression of both tumor cell-intrinsic and -extrinsic origin, depending on tumor type. NPCs grown as mouse xenografts likewise showed both mechanisms of chemokine production. Single cell RNA-sequencing revealed in vivo tumor cell-intrinsic CCL17 and CCL22 expression combined with expression from infiltrating classical resident and migratory dendritic cells in a CT26 colon cancer mouse tumor engineered to express LMP1. These data suggest that EBV-driven tumors employ dual mechanisms for CCL17 and CCL22 production. Importantly, both in vitro and in vivo Treg migration was effectively blocked by a novel, small molecule antagonist of CCR4, CCR4-351. Antagonism of the CCR4 receptor may thus be an effective means of activating the immune response against a wide spectrum of EBV+ tumors.


Asunto(s)
Quimiocina CCL17/inmunología , Quimiocina CCL22/inmunología , Infecciones por Virus de Epstein-Barr/inmunología , Neoplasias/inmunología , Neoplasias/virología , Linfocitos T Reguladores/inmunología , Animales , Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4 , Xenoinjertos , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/virología , Humanos , Ratones , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/virología
3.
J Immunother Cancer ; 8(2)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33243932

RESUMEN

BACKGROUND: Checkpoint inhibitors (CPIs) such as anti-PD(L)-1 and anti-CTLA-4 antibodies have resulted in unprecedented rates of antitumor responses and extension of survival of patients with a variety of cancers. But some patients fail to respond or initially respond but later relapse as they develop resistance to immune therapy. One of the tumor-extrinsic mechanisms for resistance to immune therapy is the accumulation of regulatory T cells (Treg) in tumors. In preclinical and clinical studies, it has been suggested that tumor trafficking of Treg is mediated by CC chemokine receptor 4 (CCR4). Over 90% of human Treg express CCR4 and migrate toward CCL17 and CCL22, two major CCR4 ligands that are either high at baseline or upregulated in tumors on CPI treatment. Hence, CCR4 antagonism has the potential to be an effective antitumor treatment by reducing the accumulation of Treg into the tumor microenvironment (TME). METHODS: We developed in vitro and in vivo models to assess Treg migration and antitumor efficacy using a potent and selective CCR4 antagonist, CCR4-351. We used two separate tumor models, Pan02 and CT26 mouse tumors, that have high and low CCR4 ligand expression, respectively. Tumor growth inhibition as well as the frequency of tumor-infiltrating Treg and effector T cells was assessed following the treatment with CCR4 antagonist alone or in combination with CPI. RESULTS: Using a selective and highly potent, novel small molecule inhibitor of CCR4, we demonstrate that migration of CCR4+ Treg into the tumor drives tumor progression and resistance to CPI treatment. In tumor models with high baseline levels of CCR4 ligands, blockade of CCR4 reduced the number of Treg and enhanced antitumor immune activity. Notably, in tumor models with low baseline level of CCR4 ligands, treatment with immune CPIs resulted in significant increases of CCR4 ligands and Treg numbers. Inhibition of CCR4 reduced Treg frequency and potentiated the antitumor effects of CPIs. CONCLUSION: Taken together, we demonstrate that CCR4-dependent Treg recruitment into the tumor is an important tumor-extrinsic mechanism for immune resistance. Blockade of CCR4 led to reduced frequency of Treg and resulted in increased antitumor activity, supporting the clinical development of CCR4 inhibitors in combination with CPI for the treatment of cancer. STATEMENT OF SIGNIFICANCE: CPI upregulates CCL17 and CCL22 expression in tumors and increases Treg migration into the TME. Pharmacological antagonism of the CCR4 receptor effectively inhibits Treg recruitment and results in enhanced antitumor efficacy either as single agent in CCR4 ligandhigh tumors or in combination with CPIs in CCR4 ligandlow tumors.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Receptores CCR4/inmunología , Linfocitos T Reguladores/inmunología , Animales , Femenino , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cancer Ther ; 19(10): 1970-1980, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32788207

RESUMEN

The deubiquitinase USP7 regulates the levels of multiple proteins with roles in cancer progression and immune response. Thus, USP7 inhibition may decrease oncogene function, increase tumor suppressor function, and sensitize tumors to DNA-damaging agents. We have discovered a novel chemical series that potently and selectively inhibits USP7 in biochemical and cellular assays. Our inhibitors reduce the viability of multiple TP53 wild-type cell lines, including several hematologic cancer and MYCN-amplified neuroblastoma cell lines, as well as a subset of TP53-mutant cell lines in vitro Our work suggests that USP7 inhibitors upregulate transcription of genes normally silenced by the epigenetic repressor complex, polycomb repressive complex 2 (PRC2), and potentiate the activity of PIM and PI3K inhibitors as well as DNA-damaging agents. Furthermore, oral administration of USP7 inhibitors inhibits MM.1S (multiple myeloma; TP53 wild type) and H526 (small cell lung cancer; TP53 mutant) tumor growth in vivo Our work confirms that USP7 is a promising, pharmacologically tractable target for the treatment of cancer.


Asunto(s)
Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Animales , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Femenino , Humanos , Ratones , Modelos Moleculares
5.
J Med Chem ; 63(15): 8584-8607, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32667798

RESUMEN

The C-C chemokine receptor 4 (CCR4) is broadly expressed on regulatory T cells (Treg) as well as other circulating and tissue-resident T cells. Treg can be recruited to the tumor microenvironment (TME) through the C-C chemokines CCL17 and CCL22. Treg accumulation in the TME has been shown to dampen the antitumor immune response and is thought to be an important driver in tumor immune evasion. Preclinical and clinical data suggest that reducing the Treg population in the TME can potentiate the antitumor immune response of checkpoint inhibitors. We have developed small-molecule antagonists of CCR4, featuring a novel piperidinyl-azetidine motif, that inhibit the recruitment of Treg into the TME and elicit antitumor responses as a single agent or in combination with an immune checkpoint blockade. The discovery of these potent, selective, and orally bioavailable CCR4 antagonists, and their activity in in vitro and in vivo models, is described herein.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Azetidinas/química , Azetidinas/farmacología , Receptores CCR4/antagonistas & inhibidores , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Azetidinas/farmacocinética , Azetidinas/uso terapéutico , Línea Celular Tumoral , Perros , Humanos , Macaca fascicularis , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Piperidinas/química , Piperidinas/farmacocinética , Piperidinas/farmacología , Piperidinas/uso terapéutico , Receptores CCR4/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología
6.
J Med Chem ; 62(13): 6190-6213, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31259550

RESUMEN

Recruitment of suppressive CD4+ FOXP3+ regulatory T cells (Treg) to the tumor microenvironment (TME) has the potential to weaken the antitumor response in patients receiving treatment with immuno-oncology (IO) agents. Human Treg express CCR4 and can be recruited to the TME through the CC chemokine ligands CCL17 and CCL22. In some cancers, Treg accumulation correlates with poor patient prognosis. Preclinical data suggests that preventing the recruitment of Treg and increasing the population of activated effector T cells (Teff) in the TME can potentiate antitumor immune responses. We developed a novel series of potent, orally bioavailable small molecule antagonists of CCR4. From this series, several compounds exhibited high potency in distinct functional assays in addition to good in vitro and in vivo ADME properties. The design, synthesis, and SAR of this series and confirmation of its in vivo activity are reported.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Pirazinas/farmacología , Pirazoles/farmacología , Receptores CCR4/antagonistas & inhibidores , Linfocitos T Reguladores/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Animales , Ciclohexanos/síntesis química , Ciclohexanos/farmacocinética , Ciclohexanos/farmacología , Descubrimiento de Drogas , Humanos , Ratones Transgénicos , Estructura Molecular , Piperazinas/síntesis química , Piperazinas/farmacocinética , Piperazinas/farmacología , Pirazinas/síntesis química , Pirazinas/farmacocinética , Pirazoles/síntesis química , Pirazoles/farmacocinética , Ratas , Relación Estructura-Actividad
7.
Expert Opin Ther Targets ; 18(11): 1253-64, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25287216

RESUMEN

OBJECTIVE: Although the human genome encodes ∼ 20,000 protein-coding genes, only a very small fraction of these have been explored as potential targets for therapeutic development. The challenge of identifying and validating new protein targets has contributed to the significant reduction in the productivity of the pharmaceutical industry in the recent decade, highlighting the continued need to find new therapeutic targets. RESEARCH DESIGN AND METHODS: The traditional methods to discover new targets are expensive, low throughput and time consuming, usually taking years to validate or invalidate a target. To address these limitations, as a proof of concept, we explored the hydrodynamic tail vein (HTV) injection as a gene delivery method for direct in vivo phenotypic screening of novel secreted factor targets for Type II diabetes therapeutics. RESULTS: High levels and sustained expression of target proteins were observed in diabetic mouse models tested, allowing us to identify multiple novel hormones that may regulate glucose metabolism. CONCLUSIONS: These results suggest that HTV is a low-cost, high-throughput method for direct in vivo phenotypic drug screening in metabolic disorders and could be applicable to many other disease areas as well. This method if combined with other approaches such as human genetic studies could provide a significant value to future drug discovery.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Proteoma , Animales , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Descubrimiento de Drogas/métodos , Técnicas de Transferencia de Gen , Glucosa/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Hidrodinámica , Inyecciones Intravenosas , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Cola (estructura animal)/irrigación sanguínea
8.
PLoS One ; 5(9)2010 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-20941365

RESUMEN

BACKGROUND: Signals between stem cells and stroma are important in establishing the stem cell niche. However, very little is known about the regulation of any mammalian stem cell niche as pure isolates of stem cells and their adjacent mesenchyme are not readily available. The prostate offers a unique model to study signals between stem cells and their adjacent stroma as in the embryonic prostate stem cell niche, the urogenital sinus mesenchyme is easily separated from the epithelial stem cells. Here we investigate the distinctive molecular signals of these two stem cell compartments in a mammalian system. METHODOLOGY/PRINCIPAL FINDINGS: We isolated fetal murine urogenital sinus epithelium and urogenital sinus mesenchyme and determined their differentially expressed genes. To distinguish transcripts that are shared by other developing epithelial/mesenchymal compartments from those that pertain to the prostate stem cell niche, we also determined the global gene expression of epidermis and dermis of the same embryos. Our analysis indicates that several of the key transcriptional components that are predicted to be active in the embryonic prostate stem cell niche regulate processes such as self-renewal (e.g., E2f and Ap2), lipid metabolism (e.g., Srebp1) and cell migration (e.g., Areb6 and Rreb1). Several of the enriched promoter binding motifs are shared between the prostate epithelial/mesenchymal compartments and their epidermis/dermis counterparts, indicating their likely relevance in epithelial/mesenchymal signaling in primitive cellular compartments. Based on differential gene expression we also defined ligand-receptor interactions that may be part of the molecular interplay of the embryonic prostate stem cell niche. CONCLUSIONS/SIGNIFICANCE: We provide a comprehensive description of the transcriptional program of the major regulators that are likely to control the cellular interactions in the embryonic prostatic stem cell niche, many of which may be common to mammalian niches in general. This study provides a comprehensive source for further studies of mesenchymal/epithelial interactions in the prostate stem cell niche. The elucidation of pathways in the normal primitive niche may provide greater insight into mechanisms subverted during abnormal proliferative and oncogenic processes. Understanding these events may result in the development of specific targeted therapies for prostatic diseases such as benign prostatic hypertrophy and carcinomas.


Asunto(s)
Comunicación Celular , Células Epiteliales/metabolismo , Mesodermo/metabolismo , Próstata/metabolismo , Transducción de Señal , Nicho de Células Madre/metabolismo , Animales , Masculino , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Endogámicos C57BL , Próstata/citología , Próstata/embriología , Nicho de Células Madre/citología , Nicho de Células Madre/embriología
9.
Biochem J ; 429(3): 515-26, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20491655

RESUMEN

PQQ (pyrroloquinoline quinone) improves energy utilization and reproductive performance when added to rodent diets devoid of PQQ. In the present paper we describe changes in gene expression patterns and transcriptional networks that respond to dietary PQQ restriction or pharmacological administration. Rats were fed diets either deficient in PQQ (PQQ-) or supplemented with PQQ (approx. 6 nmol of PQQ/g of food; PQQ+). In addition, groups of rats were either repleted by administering PQQ to PQQ- rats (1.5 mg of PQQ intraperitoneal/kg of body weight at 12 h intervals for 36 h; PQQ-/+) or partially depleted by feeding the PQQ- diet to PQQ+ rats for 48 h (PQQ+/-). RNA extracted from liver and a Codelink(R) UniSet Rat I Bioarray system were used to assess gene transcript expression. Of the approx. 10000 rat sequences and control probes analysed, 238 were altered at the P<0.01 level by feeding on the PQQ- diet for 10 weeks. Short-term PQQ depletion resulted in changes in 438 transcripts (P<0.01). PQQ repletion reversed the changes in transcript expression caused by PQQ deficiency and resulted in an alteration of 847 of the total transcripts examined (P<0.01). Genes important for cellular stress (e.g. thioredoxin), mitochondriogenesis, cell signalling [JAK (Janus kinase)/STAT (signal transducer and activator of transcription) and MAPK (mitogen-activated protein kinase) pathways] and transport were most affected. qRT-PCR (quantitative real-time PCR) and functional assays aided in validating such processes as principal targets. Collectively, the results provide a mechanistic basis for previous functional observations associated with PQQ deficiency or PQQ administered in pharmacological amounts.


Asunto(s)
Suplementos Dietéticos , Quinasas Janus/metabolismo , Sistema de Señalización de MAP Quinasas , Cofactor PQQ/administración & dosificación , Factores de Transcripción STAT/metabolismo , Tiorredoxinas/metabolismo , Transcripción Genética , Animales , ADN Mitocondrial/metabolismo , Quinasas Janus/genética , Lípidos/sangre , Hígado/metabolismo , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción STAT/genética , Tiorredoxinas/genética
10.
PLoS One ; 4(5): e5722, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19478945

RESUMEN

BACKGROUND: The global gene expression profiles of adult and fetal murine prostate stem cells were determined to define common and unique regulators whose misexpression might play a role in the development of prostate cancer. METHODOLOGY/PRINCIPAL FINDINGS: A distinctive core of transcriptional regulators common to both fetal and adult primitive prostate cells was identified as well as molecules that are exclusive to each population. Elements common to fetal and adult prostate stem cells include expression profiles of Wnt, Shh and other pathways identified in stem cells of other organs, signatures of the aryl-hydrocarbon receptor, and up-regulation of components of the aldehyde dehydrogenase/retinoic acid receptor axis. There is also a significant lipid metabolism signature, marked by overexpression of lipid metabolizing enzymes and the presence of the binding motif for Srebp1. The fetal stem cell population, characterized by more rapid proliferation and self-renewal, expresses regulators of the cell cycle, such as E2f, Nfy, Tead2 and Ap2, at elevated levels, while adult stem cells show a signature in which TGF-beta has a prominent role. Finally, comparison of the signatures of primitive prostate cells with previously described profiles of human prostate tumors identified stem cell molecules and pathways with deregulated expression in prostate tumors including chromatin modifiers and the oncogene, Erg. CONCLUSIONS/SIGNIFICANCE: Our data indicate that adult prostate stem or progenitor cells may acquire characteristics of self-renewing primitive fetal prostate cells during oncogenesis and suggest that aberrant activation of components of prostate stem cell pathways may contribute to the development of prostate tumors.


Asunto(s)
Próstata/citología , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transducción de Señal , Células Madre/metabolismo , Adulto , Animales , Proliferación Celular , Feto/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Familia de Multigenes , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
Genome Res ; 17(12): 1743-54, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17989247

RESUMEN

The contribution to genetic diversity of genomic segmental copy number variations (CNVs) is less well understood than that of single-nucleotide polymorphisms (SNPs). While less frequent than SNPs, CNVs have greater potential to affect phenotype. In this study, we have performed the most comprehensive survey to date of CNVs in mice, analyzing the genomes of 42 Mouse Phenome Consortium priority strains. This microarray comparative genomic hybridization (CGH)-based analysis has identified 2094 putative CNVs, with an average of 10 Mb of DNA in 51 CNVs when individual mouse strains were compared to the reference strain C57BL/6J. This amount of variation results in gene content that can differ by hundreds of genes between strains. These genes include members of large families such as the major histocompatibility and pheromone receptor genes, but there are also many singleton genes including genes with expected phenotypic consequences from their deletion or amplification. Using a whole-genome association analysis, we demonstrate that complex multigenic phenotypes, such as food intake, can be associated with specific copy number changes.


Asunto(s)
Variación Genética , Genoma , Animales , Dosificación de Gen , Humanos , Ratones , Ratones Endogámicos A , Ratones Endogámicos AKR , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Endogámicos NOD , Ratones Endogámicos NZB , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo
12.
Biochem J ; 390(Pt 1): 125-36, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15839837

RESUMEN

Hepsin is a membrane-anchored, trypsin-like serine protease with prominent expression in the human liver and tumours of the prostate and ovaries. To better understand the biological functions of hepsin, we identified macromolecular substrates employing a tetrapeptide PS-SCL (positional scanning-synthetic combinatorial library) screen that rapidly determines the P1-P4 substrate specificity. Hepsin exhibited strong preference at the P1 position for arginine over lysine, and favoured threonine, leucine or asparagine at the P2, glutamine or lysine at the P3, and proline or lysine at the P4 position. The relative activity of hepsin toward individual AMC (7-amino-4-methylcoumarin)-tetrapeptides was generally consistent with the overall peptide profiling results derived from the PC-SCL screen. The most active tetrapeptide substrate Ac (acetyl)-KQLR-AMC matched with the activation cleavage site of the hepatocyte growth factor precursor sc-HGF (single-chain HGF), KQLR downward arrowVVNG (where downward arrow denotes the cleavage site), as identified by a database analysis of trypsin-like precursors. X-ray crystallographic studies with KQLR chloromethylketone showed that the KQLR peptide fits well into the substrate-binding cleft of hepsin. This hepsin-processed HGF induced c-Met receptor tyrosine phosphorylation in SKOV-3 ovarian cancer cells, indicating that the hepsin-cleaved HGF is biologically active. Activation cleavage site mutants of sc-HGF with predicted non-preferred sequences, DPGR downward arrowVVNG or KQLQ downward arrowVVNG, were not processed, illustrating that the P4-P1 residues can be important determinants for substrate specificity. In addition to finding macromolecular hepsin substrates, the extracellular inhibitors of the HGF activator, HAI-1 and HAI-2, were potent inhibitors of hepsin activity (IC50 4+/-0.2 nM and 12+/-0.5 nM respectively). Together, our findings suggest that the HGF precursor is a potential in vivo substrate for hepsin in tumours, where hepsin expression is dysregulated and may influence tumorigenesis through inappropriate activation and/or regulation of HGF receptor (c-Met) functions.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias de la Próstata/metabolismo , Serina Endopeptidasas/metabolismo , Sitios de Unión , Línea Celular Tumoral , Activación Enzimática , Femenino , Expresión Génica , Humanos , Masculino , Conformación Proteica , Especificidad por Sustrato , Regulación hacia Arriba
13.
Bioinformatics ; 21(11): 2691-7, 2005 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15814557

RESUMEN

MOTIVATION: The development of microarray-based high-throughput gene profiling has led to the hope that this technology could provide an efficient and accurate means of diagnosing and classifying tumors, as well as predicting prognoses and effective treatments. However, the large amount of data generated by microarrays requires effective reduction of discriminant gene features into reliable sets of tumor biomarkers for such multiclass tumor discrimination. The availability of reliable sets of biomarkers, especially serum biomarkers, should have a major impact on our understanding and treatment of cancer. RESULTS: We have combined genetic algorithm (GA) and all paired (AP) support vector machine (SVM) methods for multiclass cancer categorization. Predictive features can be automatically determined through iterative GA/SVM, leading to very compact sets of non-redundant cancer-relevant genes with the best classification performance reported to date. Interestingly, these different classifier sets harbor only modest overlapping gene features but have similar levels of accuracy in leave-one-out cross-validations (LOOCV). Further characterization of these optimal tumor discriminant features, including the use of nearest shrunken centroids (NSC), analysis of annotations and literature text mining, reveals previously unappreciated tumor subclasses and a series of genes that could be used as cancer biomarkers. With this approach, we believe that microarray-based multiclass molecular analysis can be an effective tool for cancer biomarker discovery and subsequent molecular cancer diagnosis.


Asunto(s)
Algoritmos , Inteligencia Artificial , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Neoplasias/metabolismo , Neoplasias/clasificación , Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Biomarcadores de Tumor/clasificación , Biomarcadores de Tumor/genética , Diagnóstico por Computador/métodos , Humanos , Proteínas de Neoplasias/clasificación , Proteínas de Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/genética , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Proc Natl Acad Sci U S A ; 101(6): 1508-13, 2004 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-14757815

RESUMEN

The identification of endogenous or surrogate ligands for orphan G protein-coupled receptors (GPCRs) represents one of the most important tasks in GPCR biology and pharmacology. The challenge lies in choosing an appropriate assay in the absence of ways to activate the receptor of interest. We investigated the signaling pathway for an orphan GPCR referred to here as vasopressin receptor-related receptor 1 (VRR1) by generating a chimeric receptor, V1a/VRR1. The engineered construct contained vasopressin V1a receptor with all three intracellular loops and C terminus replaced by those of VRR1. The chimera behaved like a typical GPCR when transiently and stably expressed in mammalian cell lines based on radioligand binding and receptor internalization studies. Upon arginine vasopressin stimulation, this chimeric receptor induced robust calcium mobilization and increase of adenylate cyclase activity. The observed signaling activities are through the activation of the chimera instead of endogenously expressed receptors, as single amino acid changes in the second transmembrane regions of the chimera drastically reduced receptor efficacy and potency. Our results suggest that VRR1 has dual signaling properties in coupling to both G(q) and G(S) pathways. Analysis of native VRR1 receptor signaling pathway by using a recently identified ligand for VRR1 confirmed this conclusion and therefore validated the utility of the chimeric receptor approach for signaling pathway identification.


Asunto(s)
Receptores de Superficie Celular/metabolismo , Receptores de Vasopresinas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular , Cartilla de ADN , Técnica del Anticuerpo Fluorescente , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Ensayo de Unión Radioligante , Receptores de Superficie Celular/química , Receptores de Vasopresinas/química , Proteínas Recombinantes de Fusión/química , Homología de Secuencia de Aminoácido
15.
Bioinformatics ; 19(13): 1597-605, 2003 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12967954

RESUMEN

MOTIVATION: Since the simultaneous publication of the human genome assembly by the International Human Genome Sequencing Consortium (HGSC) and Celera Genomics, several comparisons have been made of various aspects of these two assemblies. In this work, we set out to provide a more comprehensive comparative analysis of the two assemblies and their associated gene sets. RESULTS: The local sequence content for both draft genome assemblies has been similar since the early releases, however it took a year for the quality of the Celera assembly to approach that of HGSC, suggesting an advantage of HGSC's hierarchical shotgun (HS) sequencing strategy over Celera's whole genome shotgun (WGS) approach. While similar numbers of ab initio predicted genes can be derived from both assemblies, Celera's Otto approach consistently generated larger, more varied gene sets than the Ensembl gene build system. The presence of a non-overlapping gene set has persisted with successive data releases from both groups. Since most of the unique genes from either genome assembly could be mapped back to the other assembly, we conclude that the gene set discrepancies do not reflect differences in local sequence content but rather in the assemblies and especially the different gene-prediction methodologies.


Asunto(s)
Bases de Datos de Proteínas , Perfilación de la Expresión Génica/métodos , Genoma Humano , Alineación de Secuencia/métodos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de Proteína/métodos , Proyecto Genoma Humano , Humanos , Control de Calidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Genomics ; 80(2): 138-9, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12160725

RESUMEN

Previous comparative analysis has revealed a significant disparity between the predicted gene sets produced by the International Human Genome Sequencing Consortium (HGSC) and Celera Genomics. To determine whether the source of this discrepancy was due to underlying differences in the genomic sequences or different gene prediction methodologies, we analyzed both genome assemblies in parallel. Using the GENSCAN gene prediction algorithm, we generated predicted transcriptomes that could be directly compared. BLAST-based comparisons revealed a 20-30% difference between the transcriptomes. Further differences between the two genomes were revealed with protein domain PFAM analyses. These results suggest that fundamental differences between the two genome assemblies are likely responsible for a significant portion of the discrepancy between the transcript sets predicted by the two groups.


Asunto(s)
Mapeo Cromosómico/métodos , Genoma Humano , Humanos , Cadenas de Markov
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...