Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cancer Gene Ther ; 30(10): 1323-1329, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37479798

RESUMEN

Increasing evidence imputes cancer progression and resistance to therapy to intra-tumor molecular heterogeneity set off by cancer cell plasticity. Re-activation of developmental programs strictly linked to epithelial-to-mesenchymal transition and gaining of stem cells properties are crucial in this setting. Many biological processes involved in cancer onset and progression show rhythmic fluctuations driven by the circadian clock circuitry. Novel cancer patient stratification tools taking into account the temporal dimension of these biological processes are definitely needed. Lung cancer and colorectal cancer (CRC) are the leading causes of cancer death worldwide. Here, by developing an innovative computational approach we named Phase-Finder, we show that the molecular heterogeneity characterizing the two deadliest cancers, CRC and lung adenocarcinoma (LUAD), rather than a merely stochastic event is the readout of specific cancer molecular states which correlate with time-qualified patterns of gene expression. We performed time-course transcriptome analysis of CRC and LUAD cell lines and upon computing circadian genes expression-based correlation matrices we derived pseudo-time points to infer time-qualified patterns in the transcriptomic analysis of real-world data (RWD) from large cohorts of CRC and LUAD patients. Our temporal classification of CRC and LUAD cohorts was able to effectively render time-specific patterns in cancer phenotype switching determining dynamical distribution of molecular subtypes impacting patient prognosis.


Asunto(s)
Adenocarcinoma del Pulmón , Relojes Circadianos , Neoplasias Colorrectales , Neoplasias Pulmonares , Humanos , Relojes Circadianos/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Adenocarcinoma del Pulmón/genética , Pronóstico , Neoplasias Pulmonares/genética
2.
Front Med (Lausanne) ; 10: 1146807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261121

RESUMEN

Objectives: We validated a screening protocol in which thoracic ultrasound (TUS) acts as a first-line complementary imaging technique in selecting patients which may deserve a second-line low-dose high resolution computed tomography (HRCT) scan among a population of asymptomatic high-risk subjects for interstitial lung abnormalities (ILA) and lung cancer. Due to heavy environmental pollution burden, the district Tamburi of Taranto has been chosen as "case study" for this purpose. Methods: From July 2018 to October 2020, 677 patients aged between 45 and 65 year and who had been living in the Tamburi district of Taranto for at least 10 years were included in the study. After demographic, clinical and risk factor exposition data were collected, each participant underwent a complete TUS examination. These subjects were then asked to know if they agreed to perform a second-level examination by low-dose HRCT scan. Results: On a total of 167 subjects (24.7%) who agreed to undergo a second-level HRCT, 85 patients (50.9%) actually showed pleuro-pulmonary abnormalities. Interstitial abnormalities were detected in a total of 36 patients on HRCT scan. In particular, 34 participants presented subpleural ILAs, that were classified in the fibrotic subtype in 7 cases. The remaining 2 patients showed non-subpleural interstitial abnormalities. Subpleural nodules were observed in 46 patients. TUS showed an overall diagnostic accuracy of 88.6% in detecting pleuro-pulmonary abnormalities in comparison with HRCT scan, with a sensitivity of 95.3%, a specificity of 81.7%, a positive predictive value of 84.4% and a negative predictive value of 94.4%. The matched evaluation of specific pulmonary abnormalities on HRTC scan (i.e., interstitial abnormalities or pulmonary nodules) with determinate sonographic findings revealed a reduction in both TUS sensibility and specificity. Focusing TUS evaluation on the assessment of interstitial abnormalities, a thickened pleural line showed a sensitivity of 63.9% and a specificity of 69.5%, hypoechoic striae showed a sensitivity of 38.9% and a specificity of 90.1% and subpleural nodules showed a sensitivity of 58.3% and a specificity of 77.1%. Regarding to the assessment of subpleural nodules, TUS showed a sensitivity of 60.9% and a specificity of 81.0%. However, the combined employment of TUS examination and HRCT scans allowed to identify 34 patients with early subpleural ILA and to detect three suspicious pulmonary nodules (of which two were intraparenchymal and one was a large subpleural mass), which revealed to be lung cancers on further investigations. Conclusion: A first-line TUS examination might aid the identification of subjects highly exposed to environmental pollution, who could benefit of a second-line low-dose HRCT scan to find early interstitial lung diseases as well as lung cancer. Protocol registration code: PLEURO-SCREENING-V1.0_15 Feb, 17.

3.
Cancers (Basel) ; 14(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36497213

RESUMEN

Lung cancer is the leading cause of cancer-related mortality in the world. The development of drug resistance represents a major challenge for the clinical management of patients. In the last years, microRNAs have emerged as critical modulators of anticancer therapy response. Here, we make a critical appraisal of the literature available on the role of miRNAs in the regulation of drug resistance in non-small cell lung cancer (NSCLC). We performed a comprehensive annotation of miRNAs expression profiles in chemoresistant versus sensitive NSCLC, of the drug resistance mechanisms tuned up by miRNAs, and of the relative experimental evidence in support of these. Furthermore, we described the pros and cons of experimental approaches used to investigate miRNAs in the context of therapeutic resistance, to highlight potential limitations which should be overcome to translate experimental evidence into practice ultimately improving NSCLC therapy.

4.
Mol Cancer ; 21(1): 226, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550553

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive T-cell malignancy characterized by genotypically-defined and phenotypically divergent cell populations, governed by adaptive landscapes. Clonal expansions are associated to genetic and epigenetic events, and modulation of external stimuli that affect the hierarchical structure of subclones and support the dynamics of leukemic subsets. Recently, small extracellular vesicles (sEV) such as exosomes were also shown to play a role in leukemia. Here, by coupling miRNome, bulk and single cell transcriptome profiling, we found that T-ALL-secreted sEV contain NOTCH1-dependent microRNAs (EV-miRs), which control oncogenic pathways acting as autocrine stimuli and ultimately promoting the expansion/survival of highly proliferative cell subsets of human T-cell leukemias. Of interest, we found that NOTCH1-dependent EV-miRs mostly comprised members of miR-17-92a cluster and paralogues, which rescued in vitro the proliferation of T-ALL cells blocked by γ-secretase inhibitors (GSI) an regulated a network of genes characterizing patients with relapsed/refractory early T-cell progenitor (ETP) ALLs. All these findings suggest that NOTCH1 dependent EV-miRs may sustain the growth/survival of immunophenotypically defined cell populations, altering the cell heterogeneity and the dynamics of T-cell leukemias in response to conventional therapies.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , MicroARNs/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Transducción de Señal , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
5.
J Hematol Oncol ; 15(1): 178, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587234

RESUMEN

Locally advanced non-small cell lung cancer (NSCLC) is frequent at diagnosis and requires multimodal treatment approaches. Neoadjuvant chemotherapy (NACT) followed by surgery is the treatment of choice for operable locally advanced NSCLC (Stage IIIA). However, the majority of patients are NACT-resistant and show persistent lymph nodal metastases (LNmets) and an adverse outcome. Therefore, the identification of mechanisms and biomarkers of NACT resistance is paramount for ameliorating the prognosis of patients with Stage IIIA NSCLC. Here, we investigated the miRNome and transcriptome of chemo-naïve LNmets collected from patients with Stage IIIA NSCLC (N = 64). We found that a microRNA signature accurately predicts NACT response. Mechanistically, we discovered a miR-455-5p/PD-L1 regulatory axis which drives chemotherapy resistance, hallmarks metastases with active IFN-γ response pathway (an inducer of PD-L1 expression), and impacts T cells viability and relative abundances in tumor microenvironment (TME). Our data provide new biomarkers to predict NACT response and add molecular insights relevant for improving the management of patients with locally advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , MicroARNs/genética , MicroARNs/uso terapéutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Microambiente Tumoral
6.
Cell Death Differ ; 29(8): 1552-1568, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35034102

RESUMEN

The circadian gene Timeless (TIM) provides a molecular bridge between circadian and cell cycle/DNA replication regulatory systems and has been recently involved in human cancer development and progression. However, its functional role in colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide, has not been fully clarified yet. Here, the analysis of two independent CRC patient cohorts (total 1159 samples) reveals that loss of TIM expression is an unfavorable prognostic factor significantly correlated with advanced tumor stage, metastatic spreading, and microsatellite stability status. Genome-wide expression profiling, in vitro and in vivo experiments, revealed that TIM knockdown induces the activation of the epithelial-to-mesenchymal transition (EMT) program. Accordingly, the analysis of a large set of human samples showed that TIM expression inversely correlated with a previously established gene signature of canonical EMT markers (EMT score), and its ectopic silencing promotes migration, invasion, and acquisition of stem-like phenotype in CRC cells. Mechanistically, we found that loss of TIM expression unleashes ZEB1 expression that in turn drives the EMT program and enhances the aggressive behavior of CRC cells. Besides, the deranged TIM-ZEB1 axis sets off the accumulation of DNA damage and delays DNA damage recovery. Furthermore, we show that the aggressive and genetically unstable 'CMS4 colorectal cancer molecular subtype' is characterized by a lower expression of TIM and that patients with the combination of low-TIM/high-ZEB1 expression have a poorer outcome. In conclusion, our results as a whole suggest the engagement of an unedited TIM-ZEB1 axis in key pathological processes driving malignant phenotype acquisition in colorectal carcinogenesis. Thus, TIM-ZEB1 expression profiling could provide a robust prognostic biomarker in CRC patients, supporting targeted therapeutic strategies with better treatment selection and patients' outcomes.


Asunto(s)
Proteínas de Ciclo Celular , Neoplasias Colorrectales , Transición Epitelial-Mesenquimal , Péptidos y Proteínas de Señalización Intracelular , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
7.
Oncogene ; 40(31): 4980-4991, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34172935

RESUMEN

Lung adenocarcinoma (LUAD) is the main non-small-cell lung cancer diagnosed in ~40-50% of all lung cancer cases. Despite the improvements in early detection and personalized medicine, even a sizable fraction of patients with early-stage LUAD would experience disease relapses and adverse prognosis. Previous reports indicated the existence of LUAD molecular subtypes characterized by specific gene expression and mutational profiles, and correlating with prognosis. However, the biological and molecular features of such subtypes have not been further explored. Consequently, the mechanisms driving the emergence of aggressive LUAD remained unclear. Here, we adopted a multi-tiered approach ranging from molecular to functional characterization of LUAD and used it on multiple cohorts of patients (for a total of 1227 patients) and LUAD cell lines. We investigated the tumor transcriptome and the mutational and immune gene expression profiles, and we used LUAD cell lines for cancer cell phenotypic screening. We found that loss of lung cell lineage and gain of stem cell-like characteristics, along with mutator and immune evasion phenotypes, explain the aggressive behavior of a specific subset of lung adenocarcinoma that we called C1-LUAD, including early-stage disease. This subset can be identified using a 10-gene prognostic signature. Poor prognosis patients appear to have this specific molecular lung adenocarcinoma subtype which is characterized by peculiar molecular and biological features. Our data support the hypothesis that transformed lung stem/progenitor cells and/or reprogrammed epithelial cells with CSC characteristics are hallmarks of this aggressive disease. Such discoveries suggest alternative, more aggressive, therapeutic strategies for early-stage C1-LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/etiología , Adenocarcinoma del Pulmón/patología , Plasticidad de la Célula , Evasión Inmune , Células Madre Neoplásicas/metabolismo , Fenotipo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Biomarcadores , Linaje de la Célula/genética , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Humanos , Mutación , Estadificación de Neoplasias , Células Madre Neoplásicas/patología , Transcriptoma , Microambiente Tumoral/genética
8.
Noncoding RNA ; 6(4)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333738

RESUMEN

Lung cancer burden can be reduced by adopting primary and secondary prevention strategies such as anti-smoking campaigns and low-dose CT screening for high risk subjects (aged >50 and smokers >30 packs/year). Recent CT screening trials demonstrated a stage-shift towards earlier stage lung cancer and reduction of mortality (~20%). However, a sizable fraction of patients (30-50%) with early stage disease still experience relapse and an adverse prognosis. Thus, the identification of effective prognostic biomarkers in stage I lung cancer is nowadays paramount. Here, we applied a multi-tiered approach relying on coupled RNA-seq and miRNA-seq data analysis of a large cohort of lung cancer patients (TCGA-LUAD, n = 510), which enabled us to identify prognostic miRNA signatures in stage I lung adenocarcinoma. Such signatures showed high accuracy (AUC ranging between 0.79 and 0.85) in scoring aggressive disease. Importantly, using a network-based approach we rewired miRNA-mRNA regulatory networks, identifying a minimal signature of 7 miRNAs, which was validated in a cohort of FFPE lung adenocarcinoma samples (CSS, n = 44) and controls a variety of genes overlapping with cancer relevant pathways. Our results further demonstrate the reliability of miRNA-based biomarkers for lung cancer prognostication and make a step forward to the application of miRNA biomarkers in the clinical routine.

9.
J Clin Med ; 8(1)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658453

RESUMEN

Recent advances in radiological imaging and genomic analysis are profoundly changing the way to manage lung cancer patients. Screening programs which couple lung cancer risk prediction models and low-dose computed tomography (LDCT) recently showed their effectiveness in the early diagnosis of lung tumors. In addition, the emerging field of radiomics is revolutionizing the approach to handle medical images, i.e., from a "simple" visual inspection to a high-throughput analysis of hundreds of quantitative features of images which can predict prognosis and therapy response. Yet, with the advent of next-generation sequencing (NGS) and the establishment of large genomic consortia, the whole mutational and transcriptomic profile of lung cancer has been unveiled and made publicly available via web services interfaces. This has tremendously accelerated the discovery of actionable mutations, as well as the identification of cancer biomarkers, which are pivotal for development of personalized targeted therapies. In this review, we will describe recent advances in cancer biomarkers discovery for early diagnosis, prognosis, and prediction of chemotherapy response.

10.
J Thorac Dis ; 10(1): 408-415, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29600073

RESUMEN

BACKGROUND: Novel cancer biomarkers like microRNA (miRNA) are promising tools to gain a better understanding of lung cancer pathology and yield important information to guide therapy. In recent years, new less invasive methods for the diagnosis and staging of NSCLC have become key tools in thoracic oncology and the worldwide spread of endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA). However, appropriate specimen handling is mandatory to achieve adequate results and reproducibility. The aim of this single centre prospective study was to evaluate the feasibility of a complete miRNA expression profile in fresh NSCLC cell lines obtained by EBUS-TBNA. METHODS: Patients with proven NSCLC underwent EBUS-TBNA for the diagnosis of suspect lymph node metastasis, and cytological specimens were collected for epithelial cell culture and miRNA expression analysis. To validate the miRNA expression profile, we compared the results from EBUS-TBNA NSCLC specimens with those obtained from formalin-fixed paraffin-embedded (FFPE) mediastinoscopy specimens. RESULTS: Analysis of the miRNA expression profiles of three independent EBUS-TBNA-derived primary cell lines allowed the screening of 377 different human miRNAs. One hundred and fifty miRNAs were detected in all cell lines. Analysis of the miRNA expression profile in mediastinoscopy specimens showed a strong similarity in the clusters analysed. CONCLUSIONS: The miRNA expression profile is feasible and reliable in EBUS-TBNA specimens. Validation of this protocol in fresh cytological specimens represents an effective and reproducible method to correlate translational and clinical research.

11.
JCI Insight ; 2(4): e87380, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28239645

RESUMEN

Elucidating the molecular basis of tumor metastasis is pivotal for eradicating cancer-related mortality. Triple-negative breast cancer (TNBC) encompasses a class of aggressive tumors characterized by high rates of recurrence and metastasis, as well as poor overall survival. Here, we find that the promyelocytic leukemia protein PML exerts a prometastatic function in TNBC that can be targeted by arsenic trioxide. We found that, in TNBC patients, constitutive HIF1A activity induces high expression of PML, along with a number of HIF1A target genes that promote metastasis at multiple levels. Intriguingly, PML controls the expression of these genes by binding to their regulatory regions along with HIF1A. This mechanism is specific to TNBC cells and does not occur in other subtypes of breast cancer where PML and prometastatic HIF1A target genes are underexpressed. As a consequence, PML promotes cell migration, invasion, and metastasis in TNBC cell and mouse models. Notably, pharmacological inhibition of PML with arsenic trioxide, a PML-degrading agent used to treat promyelocytic leukemia patients, delays tumor growth, impairs TNBC metastasis, and cooperates with chemotherapy by preventing metastatic dissemination. In conclusion, we report identification of a prometastatic pathway in TNBC and suggest clinical development toward the use of arsenic trioxide for TNBC patients.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Proteína de la Leucemia Promielocítica/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células 3T3 NIH , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Proteína de la Leucemia Promielocítica/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología
12.
Stroke ; 47(3): 886-90, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26839352

RESUMEN

BACKGROUND AND PURPOSE: Cerebral cavernous malformation (CCM) is characterized by multiple lumen vascular malformations in the central nervous system that can cause neurological symptoms and brain hemorrhages. About 20% of CCM patients have an inherited form of the disease with ubiquitous loss-of-function mutation in any one of 3 genes CCM1, CCM2, and CCM3. The rest of patients develop sporadic vascular lesions histologically similar to those of the inherited form and likely mediated by a biallelic acquired mutation of CCM genes in the brain vasculature. However, the molecular phenotypic features of endothelial cells in CCM lesions in sporadic patients are still poorly described. This information is crucial for a targeted therapy. METHODS: We used immunofluorescence microscopy and immunohistochemistry to analyze the expression of endothelial-to-mesenchymal transition markers in the cavernoma of sporadic CCM patients in parallel with human familial cavernoma as a reference control. RESULTS: We report here that endothelial cells, a cell type critically involved in CCM development, undergo endothelial-to-mesenchymal transition in the lesions of sporadic patients. This switch in endothelial phenotype has been described only in genetic CCM patients and in murine models of the disease. In addition, TGF-ß/p-Smad- and ß-catenin-dependent signaling pathways seem activated in sporadic cavernomas as in familial ones. CONCLUSIONS: Our findings support the use of common therapeutic strategies for both sporadic and genetic CCM malformations.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Endotelio Vascular/patología , Transición Epitelial-Mesenquimal , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Adolescente , Adulto , Anciano , Neoplasias del Sistema Nervioso Central/cirugía , Niño , Transición Epitelial-Mesenquimal/fisiología , Femenino , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
13.
EMBO Mol Med ; 8(1): 6-24, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26612856

RESUMEN

Cerebral cavernous malformations (CCMs) are vascular malformations located within the central nervous system often resulting in cerebral hemorrhage. Pharmacological treatment is needed, since current therapy is limited to neurosurgery. Familial CCM is caused by loss-of-function mutations in any of Ccm1, Ccm2, and Ccm3 genes. CCM cavernomas are lined by endothelial cells (ECs) undergoing endothelial-to-mesenchymal transition (EndMT). This switch in phenotype is due to the activation of the transforming growth factor beta/bone morphogenetic protein (TGFß/BMP) signaling. However, the mechanism linking Ccm gene inactivation and TGFß/BMP-dependent EndMT remains undefined. Here, we report that Ccm1 ablation leads to the activation of a MEKK3-MEK5-ERK5-MEF2 signaling axis that induces a strong increase in Kruppel-like factor 4 (KLF4) in ECs in vivo. KLF4 transcriptional activity is responsible for the EndMT occurring in CCM1-null ECs. KLF4 promotes TGFß/BMP signaling through the production of BMP6. Importantly, in endothelial-specific Ccm1 and Klf4 double knockout mice, we observe a strong reduction in the development of CCM and mouse mortality. Our data unveil KLF4 as a therapeutic target for CCM.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Animales , Proteína Morfogenética Ósea 6/antagonistas & inhibidores , Proteína Morfogenética Ósea 6/genética , Proteína Morfogenética Ósea 6/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células HEK293 , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Proteína KRIT1 , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/antagonistas & inhibidores , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Mutación , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Transducción de Señal , Proteína Smad1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(27): 8421-6, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26109568

RESUMEN

Cerebral cavernous malformation (CCM) is a disease of the central nervous system causing hemorrhage-prone multiple lumen vascular malformations and very severe neurological consequences. At present, the only recommended treatment of CCM is surgical. Because surgery is often not applicable, pharmacological treatment would be highly desirable. We describe here a murine model of the disease that develops after endothelial-cell-selective ablation of the CCM3 gene. We report an early, cell-autonomous, Wnt-receptor-independent stimulation of ß-catenin transcription activity in CCM3-deficient endothelial cells both in vitro and in vivo and a triggering of a ß-catenin-driven transcription program that leads to endothelial-to-mesenchymal transition. TGF-ß/BMP signaling is then required for the progression of the disease. We also found that the anti-inflammatory drugs sulindac sulfide and sulindac sulfone, which attenuate ß-catenin transcription activity, reduce vascular malformations in endothelial CCM3-deficient mice. This study opens previously unidentified perspectives for an effective pharmacological therapy of intracranial vascular cavernomas.


Asunto(s)
Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Hemangioma Cavernoso del Sistema Nervioso Central/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Sulindac/análogos & derivados , Animales , Antiinflamatorios no Esteroideos/farmacología , Proteínas Reguladoras de la Apoptosis , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sulindac/farmacología , Factor de Crecimiento Transformador beta/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
15.
EMBO Mol Med ; 6(5): 640-50, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24711541

RESUMEN

Acute promyelocytic leukemia (APL) is epitomized by the chromosomal translocation t(15;17) and the resulting oncogenic fusion protein PML-RARα. Although acting primarily as a transcriptional repressor, PML-RARα can also exert functions of transcriptional co-activation. Here, we find that PML-RARα stimulates transcription driven by HIF factors, which are critical regulators of adaptive responses to hypoxia and stem cell maintenance. Consistently, HIF-related gene signatures are upregulated in leukemic promyelocytes from APL patients compared to normal promyelocytes. Through in vitro and in vivo studies, we find that PML-RARα exploits a number of HIF-1α-regulated pro-leukemogenic functions that include cell migration, bone marrow (BM) neo-angiogenesis and self-renewal of APL blasts. Furthermore, HIF-1α levels increase upon treatment of APL cells with all-trans retinoic acid (ATRA). As a consequence, inhibiting HIF-1α in APL mouse models delays leukemia progression and exquisitely synergizes with ATRA to eliminate leukemia-initiating cells (LICs).


Asunto(s)
Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Leucemia Promielocítica Aguda/fisiopatología , Proteínas Nucleares/metabolismo , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Fenómenos Fisiológicos Celulares , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas Nucleares/genética , Proteína de la Leucemia Promielocítica , Receptores de Ácido Retinoico/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recurrencia , Receptor alfa de Ácido Retinoico , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
16.
Nature ; 498(7455): 492-6, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23748444

RESUMEN

Cerebral cavernous malformation (CCM) is a vascular dysplasia, mainly localized within the brain and affecting up to 0.5% of the human population. CCM lesions are formed by enlarged and irregular blood vessels that often result in cerebral haemorrhages. CCM is caused by loss-of-function mutations in one of three genes, namely CCM1 (also known as KRIT1), CCM2 (OSM) and CCM3 (PDCD10), and occurs in both sporadic and familial forms. Recent studies have investigated the cause of vascular dysplasia and fragility in CCM, but the in vivo functions of this ternary complex remain unclear. Postnatal deletion of any of the three Ccm genes in mouse endothelium results in a severe phenotype, characterized by multiple brain vascular malformations that are markedly similar to human CCM lesions. Endothelial-to-mesenchymal transition (EndMT) has been described in different pathologies, and it is defined as the acquisition of mesenchymal- and stem-cell-like characteristics by the endothelium. Here we show that endothelial-specific disruption of the Ccm1 gene in mice induces EndMT, which contributes to the development of vascular malformations. EndMT in CCM1-ablated endothelial cells is mediated by the upregulation of endogenous BMP6 that, in turn, activates the transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) signalling pathway. Inhibitors of the TGF-ß and BMP pathway prevent EndMT both in vitro and in vivo and reduce the number and size of vascular lesions in CCM1-deficient mice. Thus, increased TGF-ß and BMP signalling, and the consequent EndMT of CCM1-null endothelial cells, are crucial events in the onset and progression of CCM disease. These studies offer novel therapeutic opportunities for this severe, and so far incurable, pathology.


Asunto(s)
Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Animales , Proteína Morfogenética Ósea 6/antagonistas & inhibidores , Proteína Morfogenética Ósea 6/metabolismo , Proteína Morfogenética Ósea 6/farmacología , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Proteína KRIT1 , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA