RESUMEN
Objective.To compare a not adapted (NA) robust planning strategy with three fully automated online adaptive proton therapy (OAPT) workflows based on the same optimization method: dose mimicking (DM). The added clinical value and limitations of the OAPT methods are investigated for head and neck cancer (HNC) patients.Approach.The three OAPT strategies aimed at compensating for inter-fractional anatomical changes by mimiking different dose distributions on corrected cone beam CT images (corrCBCTs). Order by complexity, the OAPTs were: (1) online adaptive dose restoration (OADR) where the approved clinical dose on the planning-CT (pCT) was mimicked, (2) online adaptation using DM of the deformed clinical dose from the pCT to corrCBCTs (OADEF), and (3) online adaptation applying DM to a predicted dose on corrCBCTs (OAML). Adaptation was only applied in fractions where the target coverage criteria were not met (D98% < 95% of the prescribed dose). For 10 HNC patients, the accumulated dose distributions over the 35 fractions were calculated for NA, OADR, OADEF, and OAML.Main results.Higher target coverage was observed for all OAPT strategies compared to no adaptation. OADEF and OAML outperformed both NA and OADR and were comparable in terms of target coverage to initial clinical plans. However, only OAML provided comparable NTCP values to those from the clinical dose without statistically significant differences. When the NA initial plan was evaluated on corrCBCTs, 51% of fractions needed adaptation. The adaptation rate decreased significantly to 25% when the last adapted plan with OADR was selected for delivery, to 16% with OADEF, and to 21% with OAML. The reduction was even greater when the best plan among previously generated adapted plans (instead of the last one) was selected.Significance. The implemented OAPT strategies provided superior target coverage compared to no adaptation, higher OAR sparing, and fewer required adaptations.
Asunto(s)
Neoplasias de Cabeza y Cuello , Terapia de Protones , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Órganos en RiesgoRESUMEN
In an early phase II trial combining gemcitabine (dFdC) and radiotherapy for lung carcinomas, severe pulmonary toxicity was observed. In this framework, the objective of this study was to investigate the effect of dFdC on the tolerance of the lungs of C3H mice to single-dose irradiation. The thoraxes of C3H mice were irradiated with a graded single dose of 8 MV photons; dFdC (150 mg/kg) or saline (control animals) was administered i.p. 3 or 48 h prior to irradiation. Lung tolerance was assessed by the LD50 at 7-180 days after irradiation. For irradiation alone, the LD50 reached 14.45 Gy (95% CI 13.33-15.66 Gy). With a 3-h interval between administration of dFdC and irradiation, the LD50 reached 13.29 (95% CI 12.26-14.44 Gy); the corresponding value with a 48-h interval reached 13.01 Gy (95% CI 11.92-14.20 Gy). Our data also suggested a possible effect of dFdC on radiation-induced esophageal toxicity. dFdC has a minimal effect on lung tolerance after single-dose irradiation. However, a proper phase I-II trial should be designed before any routine use of combined dFdC and radiotherapy in the thoracic region.
Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Pulmón/efectos de la radiación , Tolerancia a Radiación/efectos de los fármacos , Animales , Desoxicitidina/farmacología , Relación Dosis-Respuesta en la Radiación , Masculino , Ratones , Ratones Endogámicos C3H , GemcitabinaRESUMEN
Radiotherapy plays a key role in the treatment of many tumors. It is difficult to determine what fraction of tumor cells survives after treatment with ionizing radiation. A convenient and sensitive biochemical assay could be efficacious in determining the potential success of radiotherapy. Since telomerase activity is frequently associated with the malignant phenotype, we sought to determine whether a correlation existed between ionizing radiation-induced cell killing and telomerase activity. We evaluated telomerase activity in two telomerase-positive and one telomerase-negative human cell line exposed to ionizing radiation. Telomerase activity was determined using a PCR-based telomeric repeat amplification protocol coupled with ELISA. We found ionizing radiation treatment to decrease the telomerase activity (in plateau phase cells of RKO, HeLa; and growing cells of RKO) in a dose-dependent manner, which correlated with cell death in in vitro tests as well as during tumor regression in nude mice. In contrast, growing HeLa cells after 24 h postradiation treatment showed an increase in telomerase activity, but there was no increase in the levels of mRNA of hTERT. To assess the sensitivity of the telomerase activity assay, we performed mixing experiments of HeLa and AG1522 cell extracts. These studies showed that telomerase activity could be detected in lysate equal to a single HeLa cell when mixed with 10,000 AG1522 cells. Our results indicate that even a few surviving neoplastic cells can be detected by telomerase activity assay. Therefore, detection of telomerase activity may be a useful monitor of radiotherapeutic efficacy and an early predictor of outcome.