Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Cell Biol ; 6(3): 255-66, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24627160

RESUMEN

Cells encountering hypoxic stress conserve resources and energy by downregulating the protein synthesis. Here we demonstrate that one mechanism in this response is the translational repression of TOP mRNAs that encode components of the translational apparatus. This mode of regulation involves TSC and Rheb, as knockout of TSC1 or TSC2 or overexpression of Rheb rescued TOP mRNA translation in oxygen-deprived cells. Stress-induced translational repression of these mRNAs closely correlates with the hypophosphorylated state of 4E-BP, a translational repressor. However, a series of 4E-BP loss- and gain-of-function experiments disprove a cause-and-effect relationship between the phosphorylation status of 4E-BP and the translational repression of TOP mRNAs under oxygen or growth factor deprivation. Furthermore, the repressive effect of anoxia is similar to that attained by the very efficient inhibition of mTOR activity by Torin 1, but much more pronounced than raptor or rictor knockout. Likewise, deficiency of raptor or rictor, even though it mildly downregulated basal translation efficiency of TOP mRNAs, failed to suppress the oxygen-mediated translational activation of TOP mRNAs. Finally, co-knockdown of TIA-1 and TIAR, two RNA-binding proteins previously implicated in translational repression of TOP mRNAs in amino acid-starved cells, failed to relieve TOP mRNA translation under other stress conditions. Thus, the nature of the proximal translational regulator of TOP mRNAs remains elusive.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Oxígeno/metabolismo , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Aminoácidos/deficiencia , Aminoácidos/metabolismo , Proteínas de Ciclo Celular , Ciclina D3/metabolismo , Factores Eucarióticos de Iniciación , Células HEK293 , Humanos , Fosforilación , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Reguladora Asociada a mTOR , Transducción de Señal , Estrés Fisiológico , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia
2.
Cell Metab ; 15(5): 725-38, 2012 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-22521878

RESUMEN

Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates and activates AGC kinase family members, including Akt, SGK1, and PKC, in response to insulin/IGF1. The liver is a key organ in insulin-mediated regulation of metabolism. To assess the role of hepatic mTORC2, we generated liver-specific rictor knockout (LiRiKO) mice. Fed LiRiKO mice displayed loss of Akt Ser473 phosphorylation and reduced glucokinase and SREBP1c activity in the liver, leading to constitutive gluconeogenesis, and impaired glycolysis and lipogenesis, suggesting that the mTORC2-deficient liver is unable to sense satiety. These liver-specific defects resulted in systemic hyperglycemia, hyperinsulinemia, and hypolipidemia. Expression of constitutively active Akt2 in mTORC2-deficient hepatocytes restored both glucose flux and lipogenesis, whereas glucokinase overexpression rescued glucose flux but not lipogenesis. Thus, mTORC2 regulates hepatic glucose and lipid metabolism via insulin-induced Akt signaling to control whole-body metabolic homeostasis. These findings have implications for emerging drug therapies that target mTORC2.


Asunto(s)
Glucoquinasa/metabolismo , Hígado/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transactivadores/metabolismo , Animales , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glucoquinasa/genética , Gluconeogénesis , Glucosa/genética , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Glucólisis , Hepatocitos/metabolismo , Homeostasis , Hiperglucemia/genética , Hiperglucemia/metabolismo , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Insulina/genética , Insulina/metabolismo , Metabolismo de los Lípidos , Lipogénesis , Hígado/enzimología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Noqueados , Fosforilación , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Transactivadores/deficiencia , Transactivadores/genética , Factores de Transcripción
3.
Methods Mol Biol ; 821: 267-78, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22125071

RESUMEN

The mammalian Target of Rapamycin (mTOR) kinase functions within two structurally and functionally distinct multiprotein complexes termed mTOR complex 1 (mTORC1) and mTORC2. The immunosuppressant and anticancer drug rapamycin is commonly used in basic research as a tool to study mTOR signaling. However, rapamycin inhibits only, and only incompletely, mTORC1, and no mTORC2-specific inhibitor is available. Hence, a full understanding of mTOR signaling in vivo, including the function of both complexes, requires genetic inhibition in addition to pharmacological inhibition. Taking advantage of the Cre/LoxP system, we generated inducible knockout mouse embryonic fibroblasts (MEFs) deficient for either the mTORC1-specific component raptor (iRapKO) or the mTORC2-specific component rictor (iRicKO). Inducibility of the knockout was important because mTOR complex components are essential. Induction of either raptor or rictor knockout eliminated raptor or rictor expression, respectively, and impaired the corresponding mTOR signaling branch. The described knockout MEFs are a valuable tool to study the full function of the two mTOR complexes individually.


Asunto(s)
Proteínas Portadoras/genética , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Transfección/métodos , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular , Femenino , Feto/citología , Vectores Genéticos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Embarazo , Proteínas/antagonistas & inhibidores , Proteínas/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Reguladora Asociada a mTOR , Transducción de Señal , Serina-Treonina Quinasas TOR , Transactivadores/antagonistas & inhibidores , Transactivadores/metabolismo , Factores de Transcripción
4.
Trends Biochem Sci ; 34(12): 620-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19875293

RESUMEN

Research on TOR has grown exponentially during the last decade, generating a complex model of the TOR signaling network. Rapamycin treatment provides a simple and straightforward method to inhibit the TOR signaling pathway and to study the influence of TOR on multiple cellular processes. The discovery of two distinct TOR complexes, TORC1 and TORC2, showed that studies using rapamycin targeted only one TOR signaling branch. TORC1 is directly inhibited by rapamycin, whereas TORC2 is not. There is no known TORC2-specific inhibitor, so genetic manipulation is required to study its biological function(s). Many studies in genetically tractable model organisms have expanded our understanding of TORC2 signaling. Here we focus on the TORC2 signaling pathway as revealed by these (mostly recent) studies.


Asunto(s)
Transactivadores/fisiología , Animales , Humanos , Inmunosupresores/farmacología , Modelos Biológicos , Saccharomycetales/metabolismo , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sirolimus/farmacología , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
5.
Proc Natl Acad Sci U S A ; 106(24): 9902-7, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19497867

RESUMEN

Mammalian target of rapamycin (mTOR), a highly conserved protein kinase that controls cell growth and metabolism in response to nutrients and growth factors, is found in 2 structurally and functionally distinct multiprotein complexes termed mTOR complex 1 (mTORC1) and mTORC2. mTORC2, which consists of rictor, mSIN1, mLST8, and mTOR, is activated by insulin/IGF1 and phosphorylates Ser-473 in the hydrophobic motif of Akt/PKB. Though the role of mTOR in single cells is relatively well characterized, the role of mTOR signaling in specific tissues and how this may contribute to overall body growth is poorly understood. To examine the role of mTORC2 in an individual tissue, we generated adipose-specific rictor knockout mice (rictor(ad-/-)). Rictor(ad-/-) mice are increased in body size due to an increase in size of nonadipose organs, including heart, kidney, spleen, and bone. Furthermore, rictor(ad-/-) mice have a disproportionately enlarged pancreas and are hyperinsulinemic, but glucose tolerant, and display elevated levels of insulin-like growth factor 1 (IGF1) and IGF1 binding protein 3 (IGFBP3). These effects are observed in mice on either a high-fat or a normal diet, but are generally more pronounced in mice on a high-fat diet. Our findings suggest that adipose tissue, in particular mTORC2 in adipose tissue, plays an unexpectedly central role in controlling whole-body growth.


Asunto(s)
Tejido Adiposo/fisiología , Crecimiento , Proteínas Quinasas/fisiología , Absorciometría de Fotón , Adiponectina/sangre , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Colesterol/sangre , Cartilla de ADN , Hígado Graso/fisiopatología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Proteína Asociada al mTOR Insensible a la Rapamicina , Serina-Treonina Quinasas TOR
6.
Mol Cell Biol ; 29(3): 640-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19047368

RESUMEN

The stimulatory effect of insulin on protein synthesis is due to its ability to activate various translation factors. We now show that insulin can increase protein synthesis capacity also by translational activation of TOP mRNAs encoding various components of the translation machinery. This translational activation involves the tuberous sclerosis complex (TSC), as the knockout of TSC1 or TSC2 rescues TOP mRNAs from translational repression in mitotically arrested cells. Similar results were obtained upon overexpression of Rheb, an immediate TSC1-TSC2 target. The role of mTOR, a downstream effector of Rheb, in translational control of TOP mRNAs has been extensively studied, albeit with conflicting results. Even though rapamycin fully blocks mTOR complex 1 (mTORC1) kinase activity, the response of TOP mRNAs to this drug varies from complete resistance to high sensitivity. Here we show that mTOR knockdown blunts the translation efficiency of TOP mRNAs in insulin-treated cells, thus unequivocally establishing a role for mTOR in this mode of regulation. However, knockout of the raptor or rictor gene has only a slight effect on the translation efficiency of these mRNAs, implying that mTOR exerts its effect on TOP mRNAs through a novel pathway with a minor, if any, contribution of the canonical mTOR complexes mTORC1 and mTORC2. This conclusion is further supported by the observation that raptor knockout renders the translation of TOP mRNAs rapamycin hypersensitive.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Insulina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Quinasas/metabolismo , Secuencia de Oligopirimidina en la Región 5' Terminal del ARN/genética , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Mitosis/efectos de los fármacos , Proteínas de Unión al GTP Monoméricas/metabolismo , Neuropéptidos/metabolismo , Proteínas Quinasas/deficiencia , Proteína Asociada al mTOR Insensible a la Rapamicina , Proteína Homóloga de Ras Enriquecida en el Cerebro , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia
7.
Cell Metab ; 8(5): 399-410, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19046571

RESUMEN

raptor is a specific and essential component of mammalian TOR complex 1 (mTORC1), a key regulator of cell growth and metabolism. To investigate a role of adipose mTORC1 in regulation of adipose and whole-body metabolism, we generated mice with an adipose-specific knockout of raptor (raptor(ad-/-)). Compared to control littermates, raptor(ad-/-) mice had substantially less adipose tissue, were protected against diet-induced obesity and hypercholesterolemia, and exhibited improved insulin sensitivity. Leanness was in spite of reduced physical activity and unaffected caloric intake, lipolysis, and absorption of lipids from the food. White adipose tissue of raptor(ad-/-) mice displayed enhanced expression of genes encoding mitochondrial uncoupling proteins characteristic of brown fat. Leanness of the raptor(ad-/-) mice was attributed to elevated energy expenditure due to mitochondrial uncoupling. These results suggest that adipose mTORC1 is a regulator of adipose metabolism and, thereby, controls whole-body energy homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/fisiología , Proteínas Portadoras/metabolismo , Factores de Transcripción/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras Transductoras de Señales , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/efectos de los fármacos , Animales , Proteínas Portadoras/genética , Respiración de la Célula , Grasas de la Dieta/administración & dosificación , Metabolismo Energético , Hipercolesterolemia/metabolismo , Insulina/fisiología , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/fisiología , Complejos Multiproteicos , Obesidad/metabolismo , Especificidad de Órganos , Proteínas , Proteína Reguladora Asociada a mTOR , Sirolimus/farmacología , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...