Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(2): 342-345, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194563

RESUMEN

Quantitative phase imaging (QPI) through multi-core fibers (MCFs) has been an emerging in vivo label-free endoscopic imaging modality with minimal invasiveness. However, the computational demands of conventional iterative phase retrieval algorithms have limited their real-time imaging potential. We demonstrate a learning-based MCF phase imaging method that significantly reduced the phase reconstruction time to 5.5 ms, enabling video-rate imaging at 181 fps. Moreover, we introduce an innovative optical system that automatically generated the first, to the best of our knowledge, open-source dataset tailored for MCF phase imaging, comprising 50,176 paired speckles and phase images. Our trained deep neural network (DNN) demonstrates a robust phase reconstruction performance in experiments with a mean fidelity of up to 99.8%. Such an efficient fiber phase imaging approach can broaden the applications of QPI in hard-to-reach areas.

2.
Nat Commun ; 15(1): 147, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167247

RESUMEN

Optical tomography has emerged as a non-invasive imaging method, providing three-dimensional insights into subcellular structures and thereby enabling a deeper understanding of cellular functions, interactions, and processes. Conventional optical tomography methods are constrained by a limited illumination scanning range, leading to anisotropic resolution and incomplete imaging of cellular structures. To overcome this problem, we employ a compact multi-core fibre-optic cell rotator system that facilitates precise optical manipulation of cells within a microfluidic chip, achieving full-angle projection tomography with isotropic resolution. Moreover, we demonstrate an AI-driven tomographic reconstruction workflow, which can be a paradigm shift from conventional computational methods, often demanding manual processing, to a fully autonomous process. The performance of the proposed cell rotation tomography approach is validated through the three-dimensional reconstruction of cell phantoms and HL60 human cancer cells. The versatility of this learning-based tomographic reconstruction workflow paves the way for its broad application across diverse tomographic imaging modalities, including but not limited to flow cytometry tomography and acoustic rotation tomography. Therefore, this AI-driven approach can propel advancements in cell biology, aiding in the inception of pioneering therapeutics, and augmenting early-stage cancer diagnostics.


Asunto(s)
Tomografía Óptica , Tomografía , Humanos , Rotación , Tomografía/métodos , Tomografía Óptica/métodos , Tecnología de Fibra Óptica , Fantasmas de Imagen , Inteligencia Artificial , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37447925

RESUMEN

Following Moore's law, the density of integrated circuits is increasing in all dimensions, for instance, in 3D stacked chip networks. Amongst other electro-optic solutions, multimode optical interconnects on a silicon interposer promise to enable high throughput for modern hardware platforms in a restricted space. Such integrated architectures require confidential communication between multiple chips as a key factor for high-performance infrastructures in the 5G era and beyond. Physical layer security is an approach providing information theoretic security among network participants, exploiting the uniqueness of the data channel. We experimentally project orthogonal and non-orthogonal symbols through 380 µm long multimode on-chip interconnects by wavefront shaping. These interconnects are investigated for their uniqueness by repeating these experiments across multiple channels and samples. We show that the detected speckle patterns resulting from modal crosstalk can be recognized by training a deep neural network, which is used to transform these patterns into a corresponding readable output. The results showcase the feasibility of applying physical layer security to multimode interconnects on silicon interposers for confidential optical 3D chip networks.


Asunto(s)
Ojo , Silicio , Humanos , Comunicación , Computadores , Reacciones Cruzadas
4.
Light Sci Appl ; 12(1): 121, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198148

RESUMEN

Quantitative phase imaging (QPI) has emerged as method for investigating biological specimen and technical objects. However, conventional methods often suffer from shortcomings in image quality, such as the twin image artifact. A novel computational framework for QPI is presented with high quality inline holographic imaging from a single intensity image. This paradigm shift is promising for advanced QPI of cells and tissues.

5.
Opt Express ; 31(10): 16133-16147, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157699

RESUMEN

In fluorescence microscopy a multitude of labels are used that bind to different structures of biological samples. These often require excitation at different wavelengths and lead to different emission wavelengths. The presence of different wavelengths can induce chromatic aberrations, both in the optical system and induced by the sample. These lead to a detuning of the optical system, as the focal positions shift in a wavelength dependent manner and finally to a decrease in the spatial resolution. We present the correction of chromatic aberrations by using an electrical tunable achromatic lens driven by reinforcement learning. The tunable achromatic lens consists of two lens chambers filled with different optical oils and sealed with deformable glass membranes. By deforming the membranes of both chambers in a targeted manner, the chromatic aberrations present in the system can be manipulated to tackle both systematic and sample induced aberrations. We demonstrate chromatic aberration correction of up to 2200 mm and shift of the focal spot positions of 4000 mm. For control of this non-linear system with four input voltages, several reinforcement learning agents are trained and compared. The experimental results show that the trained agent can correct system and sample induced aberration and thereby improve the imaging quality, this is demonstrated using biomedical samples. In this case human thyroid was used for demonstration.

6.
Sci Rep ; 12(1): 18846, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344626

RESUMEN

Recent advances in label-free histology promise a new era for real-time diagnosis in neurosurgery. Deep learning using autofluorescence is promising for tumor classification without histochemical staining process. The high image resolution and minimally invasive diagnostics with negligible tissue damage is of great importance. The state of the art is raster scanning endoscopes, but the distal lens optics limits the size. Lensless fiber bundle endoscopy offers both small diameters of a few 100 microns and the suitability as single-use probes, which is beneficial in sterilization. The problem is the inherent honeycomb artifacts of coherent fiber bundles (CFB). For the first time, we demonstrate an end-to-end lensless fiber imaging with exploiting the near-field. The framework includes resolution enhancement and classification networks that use single-shot CFB images to provide both high-resolution imaging and tumor diagnosis. The well-trained resolution enhancement network not only recovers high-resolution features beyond the physical limitations of CFB, but also helps improving tumor recognition rate. Especially for glioblastoma, the resolution enhancement network helps increasing the classification accuracy from 90.8 to 95.6%. The novel technique enables histological real-time imaging with lensless fiber endoscopy and is promising for a quick and minimally invasive intraoperative treatment and cancer diagnosis in neurosurgery.


Asunto(s)
Endoscopios , Neoplasias , Diagnóstico por Imagen , Endoscopía , Neoplasias/diagnóstico por imagen
7.
Light Sci Appl ; 11(1): 204, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790748

RESUMEN

Quantitative phase imaging (QPI) is a label-free technique providing both morphology and quantitative biophysical information in biomedicine. However, applying such a powerful technique to in vivo pathological diagnosis remains challenging. Multi-core fiber bundles (MCFs) enable ultra-thin probes for in vivo imaging, but current MCF imaging techniques are limited to amplitude imaging modalities. We demonstrate a computational lensless microendoscope that uses an ultra-thin bare MCF to perform quantitative phase imaging with microscale lateral resolution and nanoscale axial sensitivity of the optical path length. The incident complex light field at the measurement side is precisely reconstructed from the far-field speckle pattern at the detection side, enabling digital refocusing in a multi-layer sample without any mechanical movement. The accuracy of the quantitative phase reconstruction is validated by imaging the phase target and hydrogel beads through the MCF. With the proposed imaging modality, three-dimensional imaging of human cancer cells is achieved through the ultra-thin fiber endoscope, promising widespread clinical applications.

8.
Sci Rep ; 12(1): 7732, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35546604

RESUMEN

The generation of tailored complex light fields with multi-core fiber (MCF) lensless microendoscopes is widely used in biomedicine. However, the computer-generated holograms (CGHs) used for such applications are typically generated by iterative algorithms, which demand high computation effort, limiting advanced applications like fiber-optic cell manipulation. The random and discrete distribution of the fiber cores in an MCF induces strong spatial aliasing to the CGHs, hence, an approach that can rapidly generate tailored CGHs for MCFs is highly demanded. We demonstrate a novel deep neural network-CoreNet, providing accurate tailored CGHs generation for MCFs at a near video rate. The CoreNet is trained by unsupervised learning and speeds up the computation time by two magnitudes with high fidelity light field generation compared to the previously reported CGH algorithms for MCFs. Real-time generated tailored CGHs are on-the-fly loaded to the phase-only spatial light modulator (SLM) for near video-rate complex light fields generation through the MCF microendoscope. This paves the avenue for real-time cell rotation and several further applications that require real-time high-fidelity light delivery in biomedicine.


Asunto(s)
Aprendizaje Profundo , Holografía , Algoritmos , Tecnología de Fibra Óptica , Redes Neurales de la Computación
9.
Sensors (Basel) ; 21(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34300446

RESUMEN

Due to their lightweight properties, fiber-reinforced composites are well suited for large and fast rotating structures, such as fan blades in turbomachines. To investigate rotor safety and performance, in situ measurements of the structural dynamic behaviour must be performed during rotating conditions. An approach to measuring spatially resolved vibration responses of a rotating structure with a non-contact, non-rotating sensor is investigated here. The resulting spectra can be assigned to specific locations on the structure and have similar properties to the spectra measured with co-rotating sensors, such as strain gauges. The sampling frequency is increased by performing consecutive measurements with a constant excitation function and varying time delays. The method allows for a paradigm shift to unambiguous identification of natural frequencies and mode shapes with arbitrary rotor shapes and excitation functions without the need for co-rotating sensors. Deflection measurements on a glass fiber-reinforced polymer disk were performed with a diffraction grating-based sensor system at 40 measurement points with an uncertainty below 15 µrad and a commercial triangulation sensor at 200 measurement points at surface speeds up to 300 m/s. A rotation-induced increase of two natural frequencies was measured, and their mode shapes were derived at the corresponding rotational speeds. A strain gauge was used for validation.

10.
Opt Express ; 27(19): 26910-26923, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31674562

RESUMEN

The mechanical properties of tissues and cells are increasingly recognized as an important feature for the understanding of pathological processes and as a diagnostic tool in biomedicine. Impulsive stimulated Brillouin scattering (ISBS) is promising to overcome shortcomings of other measurement methods such as invasiveness, low spatial resolution and long acquisition time. In this paper, we present for the first time ISBS measurements of hydrogels, which are model materials for biological samples. We demonstrate ISBS measurements discriminating hydrogels of different stiffness. ISBS measurements with lateral resolution close to cellular level are presented. These results underline that ISBS microscopy has a high potential for biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...