RESUMEN
BACKGROUND: Proteins of the TGFß family, which are largely studied as homodimers, are also known to form heterodimers with biological activity distinct from their component homodimers. For instance, heterodimers of bone morphogenetic proteins, including BMP2/BMP7, BMP2/BMP6, and BMP9/BMP10, among others, have illustrated the importance of these heterodimeric proteins within the context of TGFß signaling. RESULTS: In this study, we have determined that mature GDF5 can be combined with mature BMP2 or BMP4 to form BMP2/GDF5 and BMP4/GDF5 heterodimer. Intriguingly, this combination of a BMP2 or BMP4 monomer, which exhibit high affinity to heparan sulfate characteristic to the BMP class, with a GDF5 monomer with low heparan sulfate affinity produces a heterodimer with an intermediate affinity. Using heparin affinity chromatography to purify the heterodimeric proteins, we then determined that both the BMP2/GDF5 and BMP4/GDF5 heterodimers consistently signaled potently across an array of cellular and in vivo systems, while the activities of their homodimeric counterparts were more context dependent. These differences were likely driven by an increase in the combined affinities for the type 1 receptors, Alk3 and Alk6. Furthermore, the X-ray crystal structure of BMP2/GDF5 heterodimer was determined, highlighting the formation of two asymmetric type 1 receptor binding sites that are both unique relative to the homodimers. CONCLUSIONS: Ultimately, this method of heterodimer production yielded a signaling molecule with unique properties relative to the homodimeric ligands, including high affinity to multiple type 1 and moderate heparan binding affinity.
Asunto(s)
Proteína Morfogenética Ósea 2 , Proteínas Morfogenéticas Óseas , Proteínas Morfogenéticas Óseas/metabolismo , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Unión Proteica , Proteínas Portadoras/metabolismo , Heparitina SulfatoRESUMEN
Inhibins are transforming growth factor-ß family heterodimers that suppress follicle-stimulating hormone (FSH) secretion by antagonizing activin class ligands. Inhibins share a common ß chain with activin ligands. Follistatin is another activin antagonist, known to bind the common ß chain of both activins and inhibins. In this study, we characterized the antagonist-antagonist complex of inhibin A and follistatin to determine if their interaction impacted activin A antagonism. We isolated the inhibin A:follistatin 288 complex, showing that it forms in a 1:1 stoichiometric ratio, different from previously reported homodimeric ligand:follistatin complexes, which bind in a 1:2 ratio. Small angle X-ray scattering coupled with modeling provided a low-resolution structure of inhibin A in complex with follistatin 288. Inhibin binds follistatin via the shared activin ß chain, leaving the α chain free and flexible. The inhibin A:follistatin 288 complex was also shown to bind heparin with lower affinity than follistatin 288 alone or in complex with activin A. Characterizing the inhibin A:follistatin 288 complex in an activin-responsive luciferase assay and by surface plasmon resonance indicated that the inhibitor complex readily dissociated upon binding type II receptor activin receptor type IIb, allowing both antagonists to inhibit activin signaling. Additionally, injection of the complex in ovariectomized female mice did not alter inhibin A suppression of FSH. Taken together, this study shows that while follistatin binds to inhibin A with a substochiometric ratio relative to the activin homodimer, the complex can dissociate readily, allowing both proteins to effectively antagonize activin signaling.
Asunto(s)
Folistatina , Glicoproteínas , Femenino , Ratones , Animales , Glicoproteínas/metabolismo , Inhibinas/metabolismo , Activinas/metabolismo , Ligandos , Hormona Folículo Estimulante/metabolismoRESUMEN
The 30+ unique ligands of the TGFß family signal by forming complexes using different combinations of type I and type II receptors. Therapeutically, the extracellular domain of a single receptor fused to an Fc molecule can effectively neutralize subsets of ligands. Increased ligand specificity can be accomplished by using the extracellular domains of both the type I and type II receptor to mimic the naturally occurring signaling complex. Here, we report the structure of one "type II-type I-Fc" fusion, ActRIIB-Alk4-Fc, in complex with two TGFß family ligands, ActA, and GDF11, providing a snapshot of this therapeutic platform. The study reveals that extensive contacts are formed by both receptors, replicating the ternary signaling complex, despite the inherent low affinity of Alk4. Our study shows that low-affinity type I interactions support altered ligand specificity and can be visualized at the molecular level using this platform.
RESUMEN
The DAN (differential screening-selected gene aberrative in neuroblastoma) family are a group of secreted extracellular proteins which typically bind to and antagonize BMP (bone morphogenetic protein) ligands. Previous studies have revealed discrepancies between the oligomerization state of certain DAN family members, with SOST (a poor antagonist of BMP signaling) forming a monomer while Grem1, Grem2, and NBL1 (more potent BMP antagonists) form non-disulfide linked dimers. The protein SOSTDC1 (Sclerostin domain containing protein 1) is sequentially similar to SOST, but has been shown to be a better BMP inhibitor. In order to determine the oligomerization state of SOSTDC1 and determine what effect dimerization might have on the mechanism of DAN family antagonism of BMP signaling, we isolated the SOSTDC1 protein and, using a battery of biophysical, biochemical, and structural techniques, showed that SOSTDC1 forms a highly stable non-covalent dimer. Additionally, this SOSTDC1 dimer was shown, using an in vitro cell based assay system, to be an inhibitor of multiple BMP signaling growth factors, including GDF5, while monomeric SOST was a very poor antagonist. These results demonstrate that SOSTDC1 is distinct from paralogue SOST in terms of both oligomerization and strength of BMP inhibition.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Aviares/química , Multimerización de Proteína , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Pollos , Humanos , Transducción de SeñalRESUMEN
Anti-Müllerian hormone (AMH) or Müllerian inhibiting substance is a unique member of the TGF-ß family responsible for development and differentiation of the reproductive system. AMH signals through its own dedicated type II receptor, anti-Müllerian hormone receptor type II (AMHR2), providing an exclusive ligand-receptor pair within the broader TGF-ß family. In this study, we used previous structural information to derive a model of AMH bound to AMHR2 to guide mutagenesis studies to identify receptor residues important for AMH signaling. Nonconserved mutations were introduced in AMHR2 and characterized in an AMH-responsive cell-based luciferase assay and native PAGE. Collectively, our results identified several residues important for AMH signaling within the putative ligand binding interface of AMHR2. Our results show that AMH engages AMHR2 at a similar interface to how activin and BMP class ligands bind the type II receptor, ACVR2B; however, there are significant molecular differences at the ligand interface of these 2 receptors, where ACVR2B is mostly hydrophobic and AMHR2 is predominately charged. Overall, this study shows that although the location of ligand binding on the receptor is similar to ACVR2A, ACVR2B, and BMPR2; AMHR2 uses unique ligand-receptor interactions to impart specificity for AMH.
Asunto(s)
Hormona Antimülleriana/metabolismo , Receptores de Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Receptores de Activinas Tipo II/química , Receptores de Activinas Tipo II/metabolismo , Trastorno del Desarrollo Sexual 46,XY/genética , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Receptores de Péptidos/química , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta/química , Receptores de Factores de Crecimiento Transformadores beta/genéticaRESUMEN
TGFß family ligands, which include the TGFßs, BMPs, and activins, signal by forming a ternary complex with type I and type II receptors. For TGFßs and BMPs, structures of ternary complexes have revealed differences in receptor assembly. However, structural information for how activins assemble a ternary receptor complex is lacking. We report the structure of an activin class member, GDF11, in complex with the type II receptor ActRIIB and the type I receptor Alk5. The structure reveals that receptor positioning is similar to the BMP class, with no interreceptor contacts; however, the type I receptor interactions are shifted toward the ligand fingertips and away from the dimer interface. Mutational analysis shows that ligand type I specificity is derived from differences in the fingertips of the ligands that interact with an extended loop specific to Alk4 and Alk5. The study also reveals differences for how TGFß and GDF11 bind to the same type I receptor, Alk5. For GDF11, additional contacts at the fingertip region substitute for the interreceptor interactions that are seen for TGFß, indicating that Alk5 binding to GDF11 is more dependent on direct contacts. In support, we show that a single residue of Alk5 (Phe84), when mutated, abolishes GDF11 signaling, but has little impact on TGFß signaling. The structure of GDF11/ActRIIB/Alk5 shows that, across the TGFß family, different mechanisms regulate type I receptor binding and specificity, providing a molecular explanation for how the activin class accommodates low-affinity type I interactions without the requirement of cooperative receptor interactions.
Asunto(s)
Activinas/química , Activinas/metabolismo , Complejos Multiproteicos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/química , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Humanos , Ratones , Modelos Moleculares , Complejos Multiproteicos/química , Ratas , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Myostatin, a key regulator of muscle mass in vertebrates, is biosynthesised as a latent precursor in muscle and is activated by sequential proteolysis of the pro-domain. To investigate the molecular mechanism by which pro-myostatin remains latent, we have determined the structure of unprocessed pro-myostatin and analysed the properties of the protein in its different forms. Crystal structures and SAXS analyses show that pro-myostatin adopts an open, V-shaped structure with a domain-swapped arrangement. The pro-mature complex, after cleavage of the furin site, has significantly reduced activity compared with the mature growth factor and persists as a stable complex that is resistant to the natural antagonist follistatin. The latency appears to be conferred by a number of distinct features that collectively stabilise the interaction of the pro-domains with the mature growth factor, enabling a regulated stepwise activation process, distinct from the prototypical pro-TGF-ß1. These results provide a basis for understanding the effect of missense mutations in pro-myostatin and pave the way for the design of novel myostatin inhibitors.
Asunto(s)
Músculo Esquelético/metabolismo , Miostatina/metabolismo , Precursores de Proteínas/metabolismo , Línea Celular , Cristalografía por Rayos X , Activación Enzimática/fisiología , Folistatina/farmacología , Células HEK293 , Humanos , Miostatina/antagonistas & inhibidores , Polimorfismo Genético , Estructura Secundaria de Proteína , Proteolisis , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Growth/differentiation factor 8 (GDF8), or myostatin, negatively regulates muscle mass. GDF8 is held in a latent state through interactions with its N-terminal prodomain, much like TGF-ß. Using a combination of small-angle X-ray scattering and mutagenesis, we characterized the interactions of GDF8 with its prodomain. Our results show that the prodomain:GDF8 complex can exist in a fully latent state and an activated or "triggered" state where the prodomain remains in complex with the mature domain. However, these states are not reversible, indicating the latent GDF8 is "spring-loaded." Structural analysis shows that the prodomain:GDF8 complex adopts an "open" configuration, distinct from the latency state of TGF-ß and more similar to the open state of Activin A and BMP9 (nonlatent complexes). We determined that GDF8 maintains similar features for latency, including the alpha-1 helix and fastener elements, and identified a series of mutations in the prodomain of GDF8 that alleviate latency, including I56E, which does not require activation by the protease Tolloid. In vivo, active GDF8 variants were potent negative regulators of muscle mass, compared with WT GDF8. Collectively, these results help characterize the latency and activation mechanisms of GDF8.
Asunto(s)
Miostatina/química , Activinas/química , Animales , Atrofia/patología , Diferenciación Celular , Dependovirus , Factor 2 de Diferenciación de Crecimiento , Factores de Diferenciación de Crecimiento/química , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis , Mutación , Miostatina/genética , Dominios Proteicos , Dispersión del Ángulo Pequeño , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
BACKGROUND: Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor ß (TGFß) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. RESULTS: Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. CONCLUSIONS: These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined.
Asunto(s)
Proteínas Morfogenéticas Óseas/química , Factores de Diferenciación de Crecimiento/química , Miostatina/química , Miostatina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Folistatina/metabolismo , Genes Reporteros , Factores de Diferenciación de Crecimiento/antagonistas & inhibidores , Factores de Diferenciación de Crecimiento/metabolismo , Humanos , Inyecciones Intravenosas , Ligandos , Luciferasas/metabolismo , Ratones , Modelos Moleculares , Mioblastos/metabolismo , Miocardio/metabolismo , Miostatina/antagonistas & inhibidores , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Alineación de Secuencia , Transducción de Señal , Proteínas Smad/metabolismo , Homología Estructural de Proteína , Relación Estructura-ActividadRESUMEN
Amorphadiene synthase (ADS) is known for its vital role as a key enzyme in the biosynthesis of the antimalarial drug artemisinin. Despite the vast research targeting this enzyme, an X-ray crystal structure of the enzyme has not yet been reported. In spite of the remarkable difference in product profile among various sesquiterpene synthases, they all share a common α-helical fold with many highly conserved regions especially the bivalent metal ion binding motifs. Hence, to better understand the structural basis of the mechanism of ADS, a reliable 3D homology model representing the conformation of the ADS enzyme and the position of its substrate, farnesyl diphosphate, in the active site was constructed. The model was generated using the reported crystal structure of α-bisabolol synthase mutant, an enzyme with high sequence identity with ADS, as a template. Site-directed mutagenesis was used to probe the active site residues. Seven residues were probed showing their vital role in the ADS mechanism and/or their effect on product profile. The generated variants confirmed the validity of the ADS model. This model will serve as a basis for exploring structure-function relationships of all residues in the active site to obtain further insight into the ADS mechanism.