Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
EJNMMI Phys ; 10(1): 62, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37819578

RESUMEN

BACKGROUND: Alongside the benefits of Total-Body imaging modalities, such as higher sensitivity, single-bed position, low dose imaging, etc., their final construction cost prevents worldwide utilization. The main aim of this study is to present a simulation-based comparison of the sensitivities of existing and currently developed tomographs to introduce a cost-efficient solution for constructing a Total-Body PET scanner based on plastic scintillators. METHODS: For the case of this study, eight tomographs based on the uEXPLORER configuration with different scintillator materials (BGO, LYSO), axial field-of-view (97.4 cm and 194.8 cm), and detector configurations (full and sparse) were simulated. In addition, 8 J-PET scanners with different configurations, such as various axial field-of-view (200 cm and 250 cm), different cross sections of plastic scintillator, and multiple numbers of plastic scintillator layers (2, 3, and 4), based on J-PET technology have been simulated by GATE software. Furthermore, Siemens' Biograph Vision has been simulated to compare the results with standard PET scans. Two types of simulations have been performed. The first one with a centrally located source with a diameter of 1 mm and a length of 250 cm, and the second one with the same source inside a water-filled cylindrical phantom with a diameter of 20 cm and a length of 183 cm. RESULTS: With regards to sensitivity, among all the proposed scanners, the ones constructed with BGO crystals give the best performance ([Formula: see text] 350 cps/kBq at the center). The utilization of sparse geometry or LYSO crystals significantly lowers the achievable sensitivity of such systems. The J-PET design gives a similar sensitivity to the sparse LYSO crystal-based detectors while having full detector coverage over the body. Moreover, it provides uniform sensitivity over the body with additional gain on its sides and provides the possibility for high-quality brain imaging. CONCLUSION: Taking into account not only the sensitivity but also the price of Total-Body PET tomographs, which till now was one of the main obstacles in their widespread clinical availability, the J-PET tomography system based on plastic scintillators could be a cost-efficient alternative for Total-Body PET scanners.

2.
EJNMMI Phys ; 10(1): 28, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37029849

RESUMEN

BACKGROUND: The Jagiellonian Positron Emission Tomograph is the 3-layer prototype of the first scanner based on plastic scintillators, consisting of 192 half-metre-long strips with readouts at both ends. Compared to crystal-based detectors, plastic scintillators are several times cheaper and could be considered as a more economical alternative to crystal scintillators in future PETs. JPET is also a first multi-photon PET prototype. For the development of multi-photon detection, with photon characterized by the continuous energy spectrum, it is important to estimate the efficiency of J-PET as a function of energy deposition. The aim of this work is to determine the registration efficiency of the J-PET tomograph as a function of energy deposition by incident photons and the intrinsic efficiency of the J-PET scanner in detecting photons of different incident energies. In this study, 3-hit events are investigated, where 2-hits are caused by 511 keV photons emitted in [Formula: see text] annihilations, while the third hit is caused by one of the scattered photons. The scattered photon is used to accurately measure the scattering angle and thus the energy deposition. Two hits by a primary and a scattered photon are sufficient to calculate the scattering angle of a photon, while the third hit ensures the precise labeling of the 511 keV photons. RESULTS: By comparing experimental and simulated energy distribution spectra, the registration efficiency of the J-PET scanner was determined in the energy deposition range of 70-270 keV, where it varies between 20 and 100[Formula: see text]. In addition, the intrinsic efficiency of the J-PET was also determined as a function of the energy of the incident photons. CONCLUSION: A method for determining registration efficiency as a function of energy deposition and intrinsic efficiency as a function of incident photon energy of the J-PET scanner was demonstrated. This study is crucial for evaluating the performance of the scanner based on plastic scintillators and its applications as a standard and multi-photon PET systems. The method may be also used in the calibration of Compton-cameras developed for the ion-beam therapy monitoring and simultaneous multi-radionuclide imaging in nuclear medicine.

3.
Nat Commun ; 12(1): 5658, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580294

RESUMEN

Charged lepton system symmetry under combined charge, parity, and time-reversal transformation (CPT) remains scarcely tested. Despite stringent quantum-electrodynamic limits, discrepancies in predictions for the electron-positron bound state (positronium atom) motivate further investigation, including fundamental symmetry tests. While CPT noninvariance effects could be manifested in non-vanishing angular correlations between final-state photons and spin of annihilating positronium, measurements were previously limited by knowledge of the latter. Here, we demonstrate tomographic reconstruction techniques applied to three-photon annihilations of ortho-positronium atoms to estimate their spin polarisation without magnetic field or polarised positronium source. We use a plastic-scintillator-based positron-emission-tomography scanner to record ortho-positronium (o-Ps) annihilations with single-event estimation of o-Ps spin and determine the complete spectrum of an angular correlation operator sensitive to CPT-violating effects. We find no violation at the precision level of 10-4, with an over threefold improvement on the previous measurement.

4.
Med Image Anal ; 73: 102199, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34365143

RESUMEN

We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most likely position of electron-positron annihilation, estimated from the emissions of back-to-back γ-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scanner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 times higher in the axial direction than for the conventional 3D FBP. For realistic 10-minute scans of NEMA IEC and XCAT, which require a trade-off between the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demonstrated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the reconstruction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP.


Asunto(s)
Algoritmos , Tomografía de Emisión de Positrones , Humanos , Procesamiento de Imagen Asistido por Computador , Método de Montecarlo , Fantasmas de Imagen
5.
Phys Med Biol ; 66(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34289460

RESUMEN

The purpose of the presented research is estimation of the performance characteristics of the economic total-body Jagiellonian-PET system (TB-J-PET) constructed from plastic scintillators. The characteristics are estimated according to the NEMA NU-2-2018 standards utilizing the GATE package. The simulated detector consists of 24 modules, each built out of 32 plastic scintillator strips (each with cross section of 6 mm times 30 mm and length of 140 or 200 cm) arranged in two layers in regular 24-sided polygon circumscribing a circle with the diameter of 78.6 cm. For the TB-J-PET with an axial field-of-view (AFOV) of 200 cm, a spatial resolutions (SRs) of 3.7 mm (transversal) and 4.9 mm (axial) are achieved. The noise equivalent count rate (NECR) peak of 630 kcps is expected at 30 kBq cc-1. Activity concentration and the sensitivity at the center amounts to 38 cps kBq-1. The scatter fraction (SF) is estimated to 36.2 %. The values of SF and SR are comparable to those obtained for the state-of-the-art clinical PET scanners and the first total-body tomographs: uExplorer and PennPET. With respect to the standard PET systems with AFOV in the range from 16 to 26 cm, the TB-J-PET is characterized by an increase in NECR approximately by factor of 4 and by the increase of the whole-body sensitivity by factor of 12.6 to 38. The time-of-flight resolution for the TB-J-PET is expected to be at the level of CRT = 240 ps full width at half maximum. For the TB-J-PET with an AFOV of 140 cm, an image quality of the reconstructed images of a NEMA IEC phantom was presented with a contrast recovery coefficient and a background variability parameters. The increase of the whole-body sensitivity and NECR estimated for the TB-J-PET with respect to current commercial PET systems makes the TB-J-PET a promising cost-effective solution for the broad clinical applications of total-body PET scanners. TB-J-PET may constitute an economic alternative for the crystal TB-PET scanners, since plastic scintillators are much cheaper than BGO or LYSO crystals and axial arrangement of the strips significantly reduces the costs of readout electronics and SiPMs.


Asunto(s)
Plásticos , Tomografía de Emisión de Positrones , Fantasmas de Imagen , Tomografía Computarizada por Rayos X
6.
Osteoporos Int ; 32(2): 251-259, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32829471

RESUMEN

This study in 8 countries across Europe found that about 75% of elderly women seen in primary care who were at high risk of osteoporosis-related fractures were not receiving appropriate medication. Lack of osteoporosis diagnosis appeared to be an important contributing factor. INTRODUCTION: Treatment rates in osteoporosis are documented to be low. We wished to assess the osteoporosis treatment gap in women ≥ 70 years in routine primary care across Europe. METHODS: This cross-sectional observational study in 8 European countries collected data from women 70 years or older visiting their general practitioner. The primary outcome was treatment gap: the proportion who were not receiving any osteoporosis medication among those at increased risk of fragility fracture (using history of fracture, 10-year probability of fracture above country-specific Fracture Risk Assessment Tool [FRAX] thresholds, T-score ≤ - 2.5). RESULTS: Median 10-year probability of fracture (without bone mineral density [BMD]) for the 3798 enrolled patients was 7.2% (hip) and 16.6% (major osteoporotic). Overall, 2077 women (55%) met one or more definitions for increased risk of fragility fracture: 1200 had a prior fracture, 1814 exceeded the FRAX threshold, and 318 had a T-score ≤ - 2.5 (only 944 received a dual-energy x-ray absorptiometry [DXA] scan). In those at increased fracture risk, the median 10-year probability of hip and major osteoporotic fracture was 11.2% and 22.8%, vs 4.1% and 11.5% in those deemed not at risk. An osteoporosis diagnosis was recorded in 804 patients (21.2%); most (79.7%) of these were at increased fracture risk. The treatment gap was 74.6%, varying from 53% in Ireland to 91% in Germany. Patients with an osteoporosis diagnosis were found to have a lower treatment gap than those without a diagnosis, with an absolute reduction of 63%. CONCLUSIONS: There is a large treatment gap in women aged ≥ 70 years at increased risk of fragility fracture in routine primary care across Europe. The gap appears to be related to a low rate of osteoporosis diagnosis.


Asunto(s)
Osteoporosis , Fracturas Osteoporóticas , Absorciometría de Fotón , Anciano , Densidad Ósea , Estudios Transversales , Europa (Continente)/epidemiología , Femenino , Alemania , Humanos , Osteoporosis/tratamiento farmacológico , Osteoporosis/epidemiología , Fracturas Osteoporóticas/epidemiología , Fracturas Osteoporóticas/etiología , Fracturas Osteoporóticas/prevención & control , Atención Primaria de Salud , Medición de Riesgo , Factores de Riesgo
7.
Phys Med ; 80: 230-242, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33190079

RESUMEN

In this paper we introduce a semi-analytic algorithm for 3-dimensional image reconstruction for positron emission tomography (PET). The method consists of the back-projection of the acquired data into the most likely image voxel according to time-of-flight (TOF) information, followed by the filtering step in the image space using an iterative optimization algorithm with a total variation (TV) regularization. TV regularization in image space is more computationally efficient than usual iterative optimization methods for PET reconstruction with full system matrix that use TV regularization. The efficiency comes from the one-time TOF back-projection step that might also be described as a reformatting of the acquired data. An important aspect of our work concerns the evaluation of the filter operator of the linear transform mapping an original radioactive tracer distribution into the TOF back-projected image. We obtain concise, closed-form analytical formula for the filter operator. The proposed method is validated with the Monte Carlo simulations of the NEMA IEC phantom using a one-layer, 50 cm-long cylindrical device called Jagiellonian PET scanner. The results show a better image quality compared with the reference TOF maximum likelihood expectation maximization algorithm.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Algoritmos , Imagenología Tridimensional , Fantasmas de Imagen
8.
EJNMMI Phys ; 7(1): 44, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32607664

RESUMEN

PURPOSE: In living organisms, the positron-electron annihilation (occurring during the PET imaging) proceeds in about 30% via creation of a metastable ortho-positronium atom. In the tissue, due to the pick-off and conversion processes, over 98% of ortho-positronia annihilate into two 511 keV photons. In this article, we assess the feasibility for reconstruction of the mean ortho-positronium lifetime image based on annihilations into two photons. The main objectives of this work include the (i) estimation of the sensitivity of the total-body PET scanners for the ortho-positronium mean lifetime imaging using 2γ annihilations and (ii) estimation of the spatial and time resolution of the ortho-positronium image as a function of the coincidence resolving time (CRT) of the scanner. METHODS: Simulations are conducted assuming that radiopharmaceutical is labeled with 44Sc isotope emitting one positron and one prompt gamma. The image is reconstructed on the basis of triple coincidence events. The ortho-positronium lifetime spectrum is determined for each voxel of the image. Calculations were performed for cases of total-body detectors build of (i) LYSO scintillators as used in the EXPLORER PET and (ii) plastic scintillators as anticipated for the cost-effective total-body J-PET scanner. To assess the spatial and time resolution, the four cases were considered assuming that CRT is equal to 500 ps, 140 ps, 50 ps, and 10 ps. RESULTS: The estimated total-body PET sensitivity for the registration and selection of image forming triple coincidences (2γ+γprompt) is larger by a factor of 13.5 (for LYSO PET) and by factor of 5.2 (for plastic PET) with respect to the sensitivity for the standard 2γ imaging by LYSO PET scanners with AFOV = 20 cm. The spatial resolution of the ortho-positronium image is comparable with the resolution achievable when using TOF-FBP algorithms already for CRT = 50 ps. For the 20-min scan, the resolution better than 20 ps is expected for the mean ortho-positronium lifetime image determination. CONCLUSIONS: Ortho-positronium mean lifetime imaging based on the annihilations into two photons and prompt gamma is shown to be feasible with the advent of the high sensitivity total-body PET systems and time resolution of the order of tens of picoseconds.

9.
EJNMMI Phys ; 7(1): 39, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-32504254

RESUMEN

PURPOSE: The time-over-threshold (TOT) technique is being used widely due to itsimplications in developing the multi-channel readouts, mainly when fast signal processing is required. Using the TOT technique, as a measure of energy loss instead of charge integration methods, significantly reduces the signal readout costs by combining the time and energy information. Therefore, this approach can potentially be utilized in J-PET tomograph which is built from plastic scintillators characterized by fast light signals. The drawback in adopting this technique lies in the non-linear correlation between input energy loss and TOT of the signal. The main motivation behind this work is to develop the relationship between TOT and energy loss and validate it by the J-PET tomograph setup. METHODS: The experiment was performed using a 22Na beta emitter source placed in the center of the J-PET tomograph. This isotope produces photons of two different energies: 511 keV photons from the positron annihilation (direct annihilation or through the formation of a para-positronium atom or pick-off process of ortho-positronium atoms) and a 1275 keV prompt photon. This allows the study of the correlation between TOT values and energy loss for energy ranges up to 1000 keV. Since the photon interacts predominantly via Compton scattering inside the plastic scintillator, there is no direct information of the energy deposition. However, using the J-PET geometry, one can measure the scattering angle of the interacting photon. Since the 22Na source emits photons of two different energies, it is necessary to know unambiguously the energy of incident photons and their corresponding scattering angles in order to estimate energy deposition. In summary, this work presents a dedicated algorithm developed to tag photons of different energies and studying their scattering angles to calculate the energy deposition by the interacting photons. RESULTS: A new method was elaborated to measure the energy loss by photons interacting with plastic scintillators used in the J-PET tomograph. We find the relationship between the energy loss and TOT is non-linear and can be described by the functions TOT = A0 + A1 * ln(E dep + A2) + A3 * (ln(E dep + A2))2 and TOT = A0 - A1 * A2[Formula: see text]. In addition, we also introduced a theoretical model to calculate the TOT as a function of energy loss in plastic scintillators. CONCLUSIONS: A relationship between TOT and energy loss by photons interacting inside the plastic scintillators used in J-PET scanner is established for a deposited energy range of 100-1000 keV.

10.
Osteoporos Int ; 31(1): 181-191, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31776637

RESUMEN

Transitioning postmenopausal women with osteoporosis from a bisphosphonate to denosumab appears to be safe and more effective at improving BMD than continuing treatment with a bisphosphonate. INTRODUCTION: We conducted a patient-level pooled analysis of four studies to estimate the efficacy and safety of transitioning to denosumab vs. continuing bisphosphonate treatment in postmenopausal women who previously received oral bisphosphonates. METHODS: Patients received 60 mg denosumab once every 6 months or a bisphosphonate (oral alendronate, risedronate, ibandronate, or intravenous zoledronic acid). Endpoints were change from baseline in lumbar spine, total hip, femoral neck, and 1/3 radius BMD at month 12, change from baseline in serum CTX-1 and P1NP, and incidence of adverse events. RESULTS: A total of 2850 randomized patients (1424 bisphosphonate:1426 denosumab) were included in the analysis. Percentage change in BMD was significantly greater (p < 0.001) for denosumab vs. bisphosphonate at each skeletal site; differences in BMD changes ranged from 0.6 to 2.0%. Percentage decrease in serum CTX-1 and P1NP was significantly greater (p < 0.0001) for denosumab vs. bisphosphonate at months 1, 6, and 12; in the denosumab group only, percentage change in serum CTX-1 at month 1 was significantly correlated with percentage change in lumbar spine and total hip BMD at month 12. The incidences of adverse events were similar between treatment groups. Three patients (one bisphosphonate and two denosumab) had atypical femoral fractures, all from the denosumab vs. zoledronic acid study. CONCLUSION: Postmenopausal women can safely transition from a bisphosphonate to denosumab, which is more effective at improving BMD than continuing with a bisphosphonate. CLINICAL TRIALS REGISTRATION: NCT00377819, NCT00919711, NCT00936897, NCT01732770.


Asunto(s)
Conservadores de la Densidad Ósea , Denosumab , Difosfonatos , Osteoporosis Posmenopáusica , Anciano , Densidad Ósea , Conservadores de la Densidad Ósea/efectos adversos , Denosumab/efectos adversos , Difosfonatos/efectos adversos , Femenino , Humanos , Persona de Mediana Edad , Osteoporosis Posmenopáusica/tratamiento farmacológico , Posmenopausia
11.
J Bone Miner Res ; 34(6): 1033-1040, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30919997

RESUMEN

Although treat-to-target strategies are being discussed in osteoporosis, there is little evidence of what the target should be to reduce fracture risk maximally. We investigated the relationship between total hip BMD T-score and the incidence of nonvertebral fracture in women who received up to 10 years of continued denosumab therapy in the FREEDOM (3 years) study and its long-term Extension (up to 7 years) study. We report the percentages of women who achieved a range of T-scores at the total hip or femoral neck over 10 years of denosumab treatment (1343 women completed 10 years of treatment). The incidence of nonvertebral fractures was lower with higher total hip T-score. This relationship plateaued at a T-score between -2.0 and -1.5 and was independent of age and prevalent vertebral fractures, similar to observations in treatment-naïve subjects. Reaching a specific T-score during denosumab treatment was dependent on the baseline T-score, with higher T-scores at baseline more likely to result in higher T-scores at each time point during the study. Our findings highlight the importance of follow-up BMD measurements in patients receiving denosumab therapy because BMD remains a robust indicator of fracture risk. These data support the notion of a specific T-score threshold as a practical target for therapy in osteoporosis. © 2019 The Authors Journal of Bone and Mineral Research published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Densidad Ósea , Denosumab/uso terapéutico , Fracturas Óseas/tratamiento farmacológico , Fracturas Óseas/fisiopatología , Anciano , Anciano de 80 o más Años , Densidad Ósea/efectos de los fármacos , Denosumab/farmacología , Femenino , Cadera/fisiopatología , Humanos , Factores de Riesgo
12.
Phys Med Biol ; 64(5): 055017, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30641509

RESUMEN

A detection system of the conventional PET tomograph is set-up to record data from [Formula: see text] annihilation into two photons with energy of 511 keV, and it gives information on the density distribution of a radiopharmaceutical in the body of the object. In this paper we explore the possibility of performing the three gamma photons imaging based on ortho-positronium annihilation, as well as the possibility of positronium mean lifetime imaging with the J-PET tomograph constructed from plastic scintillators. For this purposes simulations of the ortho-positronium formation and its annihilation into three photons were performed taking into account distributions of photons' momenta as predicted by the theory of quantum electrodynamics and the response of the J-PET tomograph. In order to test the proposed ortho-positronium lifetime image reconstruction method, we concentrate on the decay of the ortho-positronium into three photons and applications of radiopharmaceuticals labeled with isotopes emitting a prompt gamma. The proposed method of imaging is based on the determination of hit-times and hit-positions of registered photons which enables the reconstruction of the time and position of the annihilation point as well as the lifetime of the ortho-positronium on an event-by-event basis. We have simulated the production of the positronium in point-like sources and in a cylindrical phantom composed of a set of different materials in which the ortho-positronium lifetime varied from 2.0 ns to 3.0 ns, as expected for ortho-positronium created in the human body. The presented reconstruction method for total-body J-PET like detector allows to achieve a mean lifetime resolution of ∼40 ps. Recent positron annihilation lifetime spectroscopy measurements of cancerous and healthy uterine tissues show that this sensitivity may allow to study the morphological changes in cell structures.


Asunto(s)
Electrones , Tomografía de Emisión de Positrones/métodos , Estudios de Factibilidad , Fantasmas de Imagen
13.
Phys Rev Lett ; 121(5): 052001, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30118290

RESUMEN

Exclusive measurements of the quasifree pp→ppπ^{+}π^{-} reaction have been carried out at WASA@COSY by means of pd collisions at T_{p}=1.2 GeV. Total and differential cross sections have been extracted covering the energy region T_{p}=1.08-1.36 GeV, which is the region of N^{*}(1440) and Δ(1232)Δ(1232) resonance excitations. Calculations describing these excitations by t-channel meson exchange are at variance with the measured differential cross sections and underpredict substantially the experimental total cross section. An isotensor ΔN dibaryon resonance with I(J^{P})=2(1^{+}) produced associatedly with a pion is able to overcome these deficiencies.

14.
Phys Med Biol ; 63(16): 165008, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29992906

RESUMEN

A novel whole-body positron emission tomography (PET) system based on plastic scintillators is developed by the J-PET Collaboration. It consists of plastic scintillator strips arranged axially in the form of a cylinder, allowing the cost-effective construction of the total-body PET system. In order to determine the properties of the scanner prototype and optimize its geometry, advanced computer simulations were performed using the GATE (Geant4 application for tomographic emission) software. The spatial resolution, sensitivity, scatter fraction and noise equivalent count rate were estimated according to the National Electrical Manufacturers Association norm, as a function of the length of the tomograph, the number of detection layers, the diameter of the tomographic chamber and for various types of applied readout. For the single-layer geometry with a diameter of 85 cm, a strip length of 100 cm, a cross-section of 4 mm × 20 mm and silicon photomultipliers with an additional layer of wavelength shifter as the readout, the spatial resolution (full width at half maximum) in the centre of the scanner is equal to 3 mm (radial, tangential) and 6 mm (axial). For the analogous double-layer geometry with the same readout, diameter and scintillator length, with a strip cross-section of 7 mm × 20 mm, a noise equivalent count rate peak of 300 kcps was reached at 40 kBq cc-1 activity concentration, the scatter fraction is estimated to be about 35% and the sensitivity at the centre amounts to 14.9 cps kBq-1. Sensitivity profiles were also determined.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Tomografía de Emisión de Positrones/métodos , Conteo por Cintilación/instrumentación , Programas Informáticos , Tomografía Computarizada por Rayos X/métodos , Humanos , Modelos Biológicos
15.
IEEE Trans Med Imaging ; 37(11): 2526-2535, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29994248

RESUMEN

A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian positron emission tomography scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead, we introduce a field programmable gate array system-on-chip platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search, and region-of-response reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.


Asunto(s)
Interpretación de Imagen Asistida por Computador/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Algoritmos , Diseño de Equipo , Interpretación de Imagen Asistida por Computador/métodos , Tomografía de Emisión de Positrones/métodos
16.
Phys Rev Lett ; 120(2): 022002, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376676

RESUMEN

Taking advantage of the high acceptance and axial symmetry of the WASA-at-COSY detector, and the high polarization degree of the proton beam of COSY, the reaction p[over →]p→ppη has been measured close to threshold to explore the analyzing power A_{y}. The angular distribution of A_{y} is determined with the precision improved by more than 1 order of magnitude with respect to previous results, allowing a first accurate comparison with theoretical predictions. The determined analyzing power is consistent with zero for an excess energy of Q=15 MeV, signaling s-wave production with no evidence for higher partial waves. At Q=72 MeV the data reveal strong interference of Ps and Pp partial waves and cancellation of (Pp)^{2} and Ss^{*}Sd contributions. These results rule out the presently available theoretical predictions for the production mechanism of the η meson.

17.
Eur Phys J C Part Fields ; 78(11): 970, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30636927

RESUMEN

J-PET is a detector optimized for registration of photons from the electron-positron annihilation via plastic scintillators where photons interact predominantly via Compton scattering. Registration of both primary and scattered photons enables to determinate the linear polarization of the primary photon on the event by event basis with a certain probability. Here we present quantitative results on the feasibility of such polarization measurements of photons from the decay of positronium with the J-PET and explore the physical limitations for the resolution of the polarization determination of 511 keV photons via Compton scattering. For scattering angles of about 82 ∘ (where the best contrast for polarization measurement is theoretically predicted) we find that the single event resolution for the determination of the polarization is about 40 ∘ (predominantly due to properties of the Compton effect). However, for samples larger than ten thousand events the J-PET is capable of determining relative average polarization of these photons with the precision of about few degrees. The obtained results open new perspectives for studies of various physics phenomena such as quantum entanglement and tests of discrete symmetries in decays of positronium and extend the energy range of polarization measurements by five orders of magnitude beyond the optical wavelength regime.

18.
Phys Med Biol ; 62(12): 5076-5097, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28452337

RESUMEN

In this paper we estimate the time resolution of the J-PET scanner built from plastic scintillators. We incorporate the method of signal processing using the Tikhonov regularization framework and the kernel density estimation method. We obtain simple, closed-form analytical formulae for time resolution. The proposed method is validated using signals registered by means of the single detection unit of the J-PET tomograph built from a 30 cm long plastic scintillator strip. It is shown that the experimental and theoretical results obtained for the J-PET scanner equipped with vacuum tube photomultipliers are consistent.


Asunto(s)
Tomografía de Emisión de Positrones/instrumentación , Conteo por Cintilación/instrumentación , Diseño de Equipo , Humanos , Plásticos , Factores de Tiempo
19.
Ann Rheum Dis ; 76(5): 802-810, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28007756

RESUMEN

The European League Against Rheumatism (EULAR) and the European Federation of National Associations of Orthopaedics and Traumatology (EFORT) have recognised the importance of optimal acute care for the patients aged 50 years and over with a recent fragility fracture and the prevention of subsequent fractures in high-risk patients, which can be facilitated by close collaboration between orthopaedic surgeons and rheumatologists or other metabolic bone experts. Therefore, the aim was to establish for the first time collaborative recommendations for these patients. According to the EULAR standard operating procedures for the elaboration and implementation of evidence-based recommendations, 7 rheumatologists, a geriatrician and 10 orthopaedic surgeons met twice under the leadership of 2 convenors, a senior advisor, a clinical epidemiologist and 3 research fellows. After defining the content and procedures of the task force, 10 research questions were formulated, a comprehensive and systematic literature search was performed and the results were presented to the entire committee. 10 recommendations were formulated based on evidence from the literature and after discussion and consensus building in the group. The recommendations included appropriate medical and surgical perioperative care, which requires, especially in the elderly, a multidisciplinary approach including orthogeriatric care. A coordinator should setup a process for the systematic investigations for future fracture risk in all elderly patients with a recent fracture. High-risk patients should have appropriate non-pharmacological and pharmacological treatment to decrease the risk of subsequent fracture.


Asunto(s)
Fracturas Osteoporóticas/terapia , Prevención Secundaria , Anciano , Anciano de 80 o más Años , Conservadores de la Densidad Ósea/uso terapéutico , Geriatría , Humanos , Persona de Mediana Edad , Planificación de Atención al Paciente , Grupo de Atención al Paciente , Educación del Paciente como Asunto , Atención Perioperativa , Medición de Riesgo
20.
Osteoporos Int ; 28(2): 447-462, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27761590

RESUMEN

The place of calcium supplementation, with or without concomitant vitamin D supplementation, has been much debated in terms of both efficacy and safety. There have been numerous trials and meta-analyses of supplementation for fracture reduction, and associations with risk of myocardial infarction have been suggested in recent years. In this report, the product of an expert consensus meeting of the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) and the International Foundation for Osteoporosis (IOF), we review the evidence for the value of calcium supplementation, with or without vitamin D supplementation, for healthy musculoskeletal ageing. We conclude that (1) calcium and vitamin D supplementation leads to a modest reduction in fracture risk, although population-level intervention has not been shown to be an effective public health strategy; (2) supplementation with calcium alone for fracture reduction is not supported by the literature; (3) side effects of calcium supplementation include renal stones and gastrointestinal symptoms; (4) vitamin D supplementation, rather than calcium supplementation, may reduce falls risk; and (5) assertions of increased cardiovascular risk consequent to calcium supplementation are not convincingly supported by current evidence. In conclusion, we recommend, on the basis of the current evidence, that calcium supplementation, with concomitant vitamin D supplementation, is supported for patients at high risk of calcium and vitamin D insufficiency, and in those who are receiving treatment for osteoporosis.


Asunto(s)
Calcio/uso terapéutico , Suplementos Dietéticos , Fracturas Osteoporóticas/prevención & control , Conservadores de la Densidad Ósea/uso terapéutico , Calcio/efectos adversos , Suplementos Dietéticos/efectos adversos , Enfermedades Gastrointestinales/inducido químicamente , Humanos , Cálculos Renales/inducido químicamente , Metaanálisis como Asunto , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Osteoporosis/tratamiento farmacológico , Vitamina D/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...