Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 26(5): e16624, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38757353

RESUMEN

Laminarin, a ß(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.


Asunto(s)
Proteínas Bacterianas , Glucanos , Fitoplancton , Glucanos/metabolismo , Fitoplancton/metabolismo , Fitoplancton/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacteroidetes/metabolismo , Bacteroidetes/genética , Eutrofización , Diatomeas/metabolismo , Diatomeas/genética , Receptores de Superficie Celular
2.
Essays Biochem ; 67(3): 325-329, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37070299

RESUMEN

Carbohydrate active enzymes (CAZymes) and their biochemical characterization have been the subject of extensive research over the past ten years due to their importance to carbohydrate metabolism in different biological contexts. For instance, the understanding that 'polysaccharide utilizing loci' (PUL) systems hosted by specific 'carbohydrate degraders' in the intestinal microbiota play key roles in health and disease, such as Crohn's disease, ulcerative colitis or colorectal cancer to name the most well-characterized, has led to an outstanding effort in trying to decipher the molecular mechanisms by which these processes are organized and regulated. The past 10 years has also seen the expansion of CAZymes with auxiliary activities, such as lytic polysaccharide monooxygenases (LPMOs) or even sulfatases, and interest has grown in general about the enzymes needed to remove the numerous decorations and modifications of complex biomass, such as carbohydrate esterases (CE). Today, the characterization of these 'modifying' enzymes allows us to tackle a much more complex biomass, which presents sulfations, methylations, acetylations or interconnections with lignin. This special issue about CAZyme biochemistry covers all these aspects, ranging from implications in disease to environmental and biotechnological impact, with a varied collection of twenty-four review articles providing current biochemical, structural and mechanistic insights into their respective topics.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Carbohidratos , Humanos , Polisacáridos/metabolismo
4.
Protein Sci ; 32(1): e4540, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502283

RESUMEN

Haloacid dehalogenases are potentially involved in bioremediation of contaminated environments and few have been biochemically characterized from marine organisms. The l-2-haloacid dehalogenase (l-2-HAD) from the marine Bacteroidetes Zobellia galactanivorans DsijT (ZgHAD) has been shown to catalyze the dehalogenation of C2 and C3 short-chain l-2-haloalkanoic acids. To better understand its catalytic properties, its enzymatic stability, active site, and 3D structure were analyzed. ZgHAD demonstrates high stability to solvents and a conserved catalytic activity when heated up to 60°C, its melting temperature being at 65°C. The X-ray structure of the recombinant enzyme was solved by molecular replacement. The enzyme folds as a homodimer and its active site is very similar to DehRhb, the other known l-2-HAD from a marine Rhodobacteraceae. Marked differences are present in the putative substrate entrance sites of the two enzymes. The H179 amino acid potentially involved in the activation of a catalytic water molecule was confirmed as catalytic amino acid through the production of two inactive site-directed mutants. The crystal packing of 13 dimers in the asymmetric unit of an active-site mutant, ZgHAD-H179N, reveals domain movements of the monomeric subunits relative to each other. The involvement of a catalytic His/Glu dyad and substrate binding amino acids was further confirmed by computational docking. All together our results give new insights into the catalytic mechanism of the group of marine l-2-HAD.


Asunto(s)
Flavobacterium , Hidrolasas , Flavobacterium/genética , Flavobacterium/metabolismo , Rayos X , Hidrolasas/química , Aminoácidos , Especificidad por Sustrato
5.
J Biol Chem ; 298(12): 102707, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402445

RESUMEN

The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial ß-carrageenase and ß-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation. Next, our biochemical characterization of CcGH16-3 revealed an unexpected ß-porphyranase activity, since porphyran is not a known component of the C. crispus extracellular matrix. Kinetic characterization was undertaken on natural porphyran substrate with an experimentally determined molecular weight. We found CcGH16-3 has a pH optimum between 7.5 and 8.0; however, it exhibits reasonably stable activity over a large pH range (pH 7.0-9.0). CcGH16-3 has a KM of 4.0 ± 0.8 µM, a kcat of 79.9 ± 6.9 s-1, and a kcat/KM of 20.1 ± 1.7 µM-1 s-1. We structurally examined fine enzymatic specificity by performing a subsite dissection. CcGH16-3 has a strict requirement for D-galactose and L-galactose-6-sulfate in its -1 and +1 subsites, respectively, whereas the outer subsites are less restrictive. CcGH16-3 is one of a handful of algal enzymes characterized with a specificity for a polysaccharide unknown to be found in their own extracellular matrix. This ß-porphyranase activity in a carrageenophyte red alga may provide defense against red algal pathogens or provide a competitive advantage in niche colonization.


Asunto(s)
Chondrus , Rhodophyta , Chondrus/genética , Rhodophyta/genética , Polisacáridos , Glicósido Hidrolasas , Biología
7.
Biotechnol Biofuels Bioprod ; 15(1): 68, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35725490

RESUMEN

BACKGROUND: Natural cellulosome multi-enzyme complexes, their components, and engineered 'designer cellulosomes' (DCs) promise an efficient means of breaking down cellulosic substrates into valuable biofuel products. Their broad uptake in biotechnology relies on boosting proximity-based synergy among the resident enzymes, but the modular architecture challenges structure determination and rational design. RESULTS: We used small angle X-ray scattering combined with molecular modeling to study the solution structure of cellulosomal components. These include three dockerin-bearing cellulases with distinct substrate specificities, original scaffoldins from the human gut bacterium Ruminococcus champanellensis (ScaA, ScaH and ScaK) and a trivalent cohesin-bearing designer scaffoldin (Scaf20L), followed by cellulosomal complexes comprising these components, and the nonavalent fully loaded Clostridium thermocellum CipA in complex with Cel8A from the same bacterium. The size analysis of Rg and Dmax values deduced from the scattering curves and corresponding molecular models highlight their variable aspects, depending on composition, size and spatial organization of the objects in solution. CONCLUSIONS: Our data quantifies variability of form and compactness of cellulosomal components in solution and confirms that this native plasticity may well be related to speciation with respect to the substrate that is targeted. By showing that scaffoldins or components display enhanced compactness compared to the free objects, we provide new routes to rationally enhance their stability and performance in their environment of action.

8.
Nat Chem Biol ; 18(8): 841-849, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35710619

RESUMEN

Sulfated glycans are ubiquitous nutrient sources for microbial communities that have coevolved with eukaryotic hosts. Bacteria metabolize sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognize their glycan substrate remain poorly understood. Here, we use structural biology to determine how sulfatases from the human gut microbiota recognize sulfated glycans. We reveal seven new carbohydrate sulfatase structures spanning four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent novel structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity toward related but distinct glycan targets. Collectively, these data reveal that carbohydrate sulfatases are highly selective for the glycan component of their substrate. These data provide new approaches for probing sulfated glycan metabolism while revealing the roles carbohydrate sulfatases play in host glycan catabolism.


Asunto(s)
Microbioma Gastrointestinal , Sulfatasas , Bacterias/metabolismo , Humanos , Polisacáridos/química , Sulfatasas/química , Sulfatos/química
9.
Sci Rep ; 11(1): 19523, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34593864

RESUMEN

Fucoidans are sulfated, fucose-rich marine polysaccharides primarily found in cell walls of brown seaweeds (macroalgae). Fucoidans are known to possess beneficial bioactivities depending on their structure and sulfation degree. Here, we report the first functional characterization and the first crystal structure of a prokaryotic sulfatase, PsFucS1, belonging to sulfatase subfamily S1_13, able to release sulfate from fucoidan oligosaccharides. PsFucS1 was identified in the genome of a Pseudoalteromonas sp. isolated from sea cucumber gut. PsFucS1 (57 kDa) is Ca2+ dependent and has an unusually high optimal temperature (68 °C) and thermostability. Further, the PsFucS1 displays a unique quaternary hexameric structure comprising a tight trimeric dimer complex. The structural data imply that this hexamer formation results from an uncommon interaction of each PsFucS1 monomer that is oriented perpendicular to the common dimer interface (~ 1500 Å2) that can be found in analogous sulfatases. The uncommon interaction involves interfacing (1246 Å2) through a bundle of α-helices in the N-terminal domain to form a trimeric ring structure. The high thermostability may be related to this unusual quaternary hexameric structure formation that is suggested to represent a novel protein thermostabilization mechanism.


Asunto(s)
Modelos Moleculares , Polisacáridos/metabolismo , Células Procariotas/enzimología , Conformación Proteica , Sulfatasas/química , Sulfatasas/metabolismo , Animales , Dominio Catalítico , Activación Enzimática , Estabilidad de Enzimas , Microbioma Gastrointestinal , Oligosacáridos/química , Oligosacáridos/metabolismo , Polisacáridos/química , Pepinos de Mar/microbiología , Sulfatasas/genética
10.
Nature ; 598(7880): 332-337, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616040

RESUMEN

Humans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel disease3.


Asunto(s)
Bacteroides/enzimología , Colon/metabolismo , Colon/microbiología , Microbioma Gastrointestinal , Mucinas/metabolismo , Sulfatasas/metabolismo , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Animales , Colon/química , Cristalografía por Rayos X , Femenino , Galactosa/metabolismo , Humanos , Masculino , Ratones , Modelos Moleculares , Especificidad por Sustrato , Sulfatasas/química
11.
Glycobiology ; 31(10): 1364-1377, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34184062

RESUMEN

Alginate is a major compound of brown macroalgae and as such an important carbon and energy source for heterotrophic marine bacteria. Despite the rather simple composition of alginate only comprising mannuronate and guluronate units, these bacteria feature complex alginolytic systems that can contain up to seven alginate lyases. This reflects the necessity of large enzyme systems for the complete degradation of the abundant substrate. Numerous alginate lyases have been characterized. They belong to different polysaccharide lyase (PL) families, but only one crystal structure of a family 17 (PL17) alginate lyase has been reported to date, namely Alg17c from the gammaproteobacterium Saccharophagus degradans. Biochemical and structural characterizations are helpful to link sequence profiles to function, evolution of functions and niche-specific characteristics. Here, we combined detailed biochemical and crystallographic analysis of AlyA3, a PL17 alginate lyase from the marine flavobacteria Zobellia galactanivorans DsijT, providing the first structure of a PL17 in the Bacteroidetes phylum. AlyA3 is exo-lytic and highly specific of mannuronate stretches. As part of an "alginate utilizing locus", its activity is complementary to that of other characterized alginate lyases from the same bacterium. Structural comparison with Alg17c highlights a common mode of action for exo-lytic cleavage of the substrate, strengthening our understanding of the PL17 catalytic mechanism. We show that unlike Alg17c, AlyA3 contains an inserted flexible loop at the entrance to the catalytic groove, likely involved in substrate recognition, processivity and turn over.


Asunto(s)
Flavobacteriaceae/enzimología , Polisacárido Liasas/química , Polisacárido Liasas/metabolismo , Biocatálisis , Polisacárido Liasas/genética , Conformación Proteica
12.
Sci Rep ; 10(1): 9932, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555346

RESUMEN

Rhizobia are nitrogen-fixing soil bacteria that can infect legume plants to establish root nodules symbiosis. To do that, a complex exchange of molecular signals occurs between plants and bacteria. Among them, rhizobial Nops (Nodulation outer proteins), secreted by a type III secretion system (T3SS) determine the host-specificity for efficient symbiosis with plant roots. Little is known about the molecular function of secreted Nops (also called effectors (T3E)) and their role in the symbiosis process. We performed the structure-function characterization of NopAA, a T3E from Sinorhizobium fredii by using a combination of X-ray crystallography, biochemical and biophysical approaches. This work displays for the first time a complete structural and biochemical characterization of a symbiotic T3E. Our results showed that NopAA has a catalytic domain with xyloglucanase activity extended by a N-terminal unfolded secretion domain that allows its secretion. We proposed that these original structural properties combined with the specificity of NopAA toward xyloglucan, a key component of root cell wall which is also secreted by roots in the soil, can give NopAA a strategic position to participate in recognition between bacteria and plant roots and to intervene in nodulation process.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Glucanos/metabolismo , Hidrolasas/metabolismo , Sinorhizobium fredii/enzimología , Sistemas de Secreción Tipo III/química , Xilanos/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Sistemas de Secreción Tipo III/metabolismo
13.
J Biol Chem ; 294(44): 15973-15986, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31501245

RESUMEN

Glycoside hydrolase family (GH) 16 comprises a large and taxonomically diverse family of glycosidases and transglycosidases that adopt a common ß-jelly-roll fold and are active on a range of terrestrial and marine polysaccharides. Presently, broadly insightful sequence-function correlations in GH16 are hindered by a lack of a systematic subfamily structure. To fill this gap, we have used a highly scalable protein sequence similarity network analysis to delineate nearly 23,000 GH16 sequences into 23 robust subfamilies, which are strongly supported by hidden Markov model and maximum likelihood molecular phylogenetic analyses. Subsequent evaluation of over 40 experimental three-dimensional structures has highlighted key tertiary structural differences, predominantly manifested in active-site loops, that dictate substrate specificity across the GH16 evolutionary landscape. As for other large GH families (i.e. GH5, GH13, and GH43), this new subfamily classification provides a roadmap for functional glycogenomics that will guide future bioinformatics and experimental structure-function analyses. The GH16 subfamily classification is publicly available in the CAZy database. The sequence similarity network workflow used here, SSNpipe, is freely available from GitHub.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Fúngicas/química , Glicósido Hidrolasas/genética , Filogenia , Análisis de Secuencia de Proteína/métodos , Algoritmos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Dominio Catalítico , Evolución Molecular , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Glicómica/métodos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/clasificación
14.
J Biol Chem ; 294(17): 6923-6939, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30846563

RESUMEN

Agars are sulfated galactans from red macroalgae and are composed of a d-galactose (G unit) and l-galactose (L unit) alternatively linked by α-1,3 and ß-1,4 glycosidic bonds. These polysaccharides display high complexity, with numerous modifications of their backbone (e.g. presence of a 3,6-anhydro-bridge (LA unit) and sulfations and methylation). Currently, bacterial polysaccharidases that hydrolyze agars (ß-agarases and ß-porphyranases) have been characterized on simple agarose and more rarely on porphyran, a polymer containing both agarobiose (G-LA) and porphyranobiose (GL6S) motifs. How bacteria can degrade complex agars remains therefore an open question. Here, we studied an enzyme from the marine bacterium Zobellia galactanivorans (ZgAgaC) that is distantly related to the glycoside hydrolase 16 (GH16) family ß-agarases and ß-porphyranases. Using a large red algae collection, we demonstrate that ZgAgaC hydrolyzes not only agarose but also complex agars from Ceramiales species. Using tandem MS analysis, we elucidated the structure of a purified hexasaccharide product, L6S-G-LA2Me-G(2Pentose)-LA2S-G, released by the activity of ZgAgaC on agar extracted from Osmundea pinnatifida By resolving the crystal structure of ZgAgaC at high resolution (1.3 Å) and comparison with the structures of ZgAgaB and ZgPorA in complex with their respective substrates, we determined that ZgAgaC recognizes agarose via a mechanism different from that of classical ß-agarases. Moreover, we identified conserved residues involved in the binding of complex oligoagars and demonstrate a probable influence of the acidic polysaccharide's pH microenvironment on hydrolase activity. Finally, a phylogenetic analysis supported the notion that ZgAgaC homologs define a new GH16 subfamily distinct from ß-porphyranases and classical ß-agarases.


Asunto(s)
Agar/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Flavobacteriaceae/enzimología , Hidrolasas/aislamiento & purificación , Secuencia de Aminoácidos , Organismos Acuáticos/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrolasas/metabolismo , Filogenia , Conformación Proteica , Agua de Mar/microbiología
15.
Proteins ; 87(1): 34-40, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30315603

RESUMEN

In the marine environment agar degradation is assured by bacteria that contain large agarolytic systems with enzymes acting in various endo- and exo-modes. Agarase A (AgaA) is an endo-glycoside hydrolase of family 16 considered to initiate degradation of agarose. Agaro-oligosaccharide binding at a unique surface binding site (SBS) in AgaA from Zobellia galactanivorans was investigated by computational methods in conjunction with a structure/sequence guided approach of site-directed mutagenesis probed by surface plasmon resonance binding analysis of agaro-oligosaccharides of DP 4-10. The crystal structure has shown that agaro-octaose interacts via H-bonds and aromatic stacking along 7 subsites (L through R) of the SBS in the inactive catalytic nucleophile mutant AgaA-E147S. D271 is centrally located in the extended SBS where it forms H-bonds to galactose and 3,6-anhydrogalactose residues of agaro-octaose at subsites O and P. We propose D271 is a key residue in ligand binding to the SBS. Thus AgaA-E147S/D271A gave slightly decreasing KD values from 625 ± 118 to 468 ± 13 µM for agaro-hexaose, -octaose, and -decaose, which represent 3- to 4-fold reduced affinity compared with AgaA-E147S. Molecular dynamics simulations and interaction analyses of AgaA-E147S/D271A indicated disruption of an extended H-bond network supporting that D271 is critical for the functional SBS. Notably, neither AgaA-E147S/W87A nor AgaA-E147S/W277A, designed to eliminate stacking with galactose residues at subsites O and Q, respectively, were produced in soluble form. W87 and W277 may thus control correct folding and structural integrity of AgaA.


Asunto(s)
Ácido Aspártico/metabolismo , Flavobacteriaceae/enzimología , Glicósido Hidrolasas/metabolismo , Proteínas Mutantes/metabolismo , Mutación , Sefarosa/metabolismo , Ácido Aspártico/química , Ácido Aspártico/genética , Sitios de Unión , Catálisis , Dominio Catalítico , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Especificidad por Sustrato
16.
Biochem J ; 475(22): 3609-3628, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30341165

RESUMEN

Cell walls of marine macroalgae are composed of diverse polysaccharides that provide abundant carbon sources for marine heterotrophic bacteria. Among them, Zobellia galactanivorans is considered as a model for studying algae-bacteria interactions. The degradation of typical algal polysaccharides, such as agars or alginate, has been intensively studied in this model bacterium, but the catabolism of plant-like polysaccharides is essentially uncharacterized. Here, we identify a polysaccharide utilization locus in the genome of Z. galactanivorans, induced by laminarin (ß-1,3-glucans), and containing a putative GH5 subfamily 4 (GH5_4) enzyme, currently annotated as a endoglucanase (ZgEngAGH5_4). A phylogenetic analysis indicates that ZgEngAGH5_4 was laterally acquired from an ancestral Actinobacteria We performed the biochemical and structural characterization of ZgEngAGH5_4 and demonstrated that this GH5 is, in fact, an endo-ß-glucanase, most active on mixed-linked glucan (MLG). Although ZgEngAGH5_4 and GH16 lichenases both hydrolyze MLG, these two types of enzymes release different series of oligosaccharides. Structural analyses of ZgEngAGH5_4 reveal that all the amino acid residues involved in the catalytic triad and in the negative glucose-binding subsites are conserved, when compared with the closest relative, the cellulase EngD from Clostridium cellulovorans, and some other GH5s. In contrast, the positive glucose-binding subsites of ZgEngAGH5_4 are different and this could explain the preference for MLG, with respect to cellulose or laminarin. Molecular dynamics computer simulations using different hexaoses reveal that the specificity for MLG occurs through the +1 and +2 subsites of the binding pocket that display the most important differences when compared with the structures of other GH5_4 enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavobacteriaceae/enzimología , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Flavobacteriaceae/genética , Transferencia de Gen Horizontal , Glicósido Hidrolasas/clasificación , Glicósido Hidrolasas/genética , Hidrólisis , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Filogenia , Conformación Proteica , Agua de Mar/microbiología , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
17.
FEBS J ; 285(22): 4281-4295, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30230202

RESUMEN

Sulfated fucans, often denoted as fucoidans, are highly variable cell wall polysaccharides of brown algae, which possess a wide range of bioactive properties with potential pharmaceutical applications. Due to their complex architecture, the structures of algal fucans have until now only been partly determined. Enzymes capable of hydrolyzing sulfated fucans may allow specific release of defined bioactive oligosaccharides and may serve as a tool for structural elucidation of algal walls. Currently, such enzymes include only a few hydrolases belonging to the glycoside hydrolase family 107 (GH107), and little is known about their mechanistics and the substrates they degrade. In this study, we report the identification and recombinant production of three novel GH107 family proteins derived from a marine metagenome. Activity screening against a large substrate collection showed that all three enzymes degraded sulfated fucans from brown algae in the order Fucales. This is in accordance with a hydrolytic activity against α-1,4-fucosidic linkages in sulfated fucans as reported for previous GH107 members. Also, the activity screening gave new indications about the structural differences in brown algal cell walls. Finally, sequence analyses allowed identification of the proposed catalytic residues of the GH107 family. The findings presented here form a new basis for understanding the GH107 family of enzymes and investigating the complex sulfated fucans from brown algae. DATABASE: The assembled metagenome and raw sequence data is available at EMBL-EBI (Study number: PRJEB28480). Sequences of the GH107 fucanases (Fp273, Fp277, and Fp279) have been deposited in GenBank under accessions MH755451-MH755453.


Asunto(s)
Proteínas Algáceas/metabolismo , Anticoagulantes/metabolismo , Pared Celular/metabolismo , Glicósido Hidrolasas/metabolismo , Metagenoma , Phaeophyceae/enzimología , Polisacáridos/metabolismo , Proteínas Algáceas/genética , Glicósido Hidrolasas/genética , Ensayos Analíticos de Alto Rendimiento , Phaeophyceae/genética
18.
Photosynth Res ; 138(1): 57-71, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29938315

RESUMEN

The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.


Asunto(s)
Proteínas Bacterianas/fisiología , Cianobacterias/metabolismo , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clorofila/metabolismo , Cianobacterias/genética , Citometría de Flujo , Genoma Bacteriano , Luz , Modelos Moleculares , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética
19.
Front Microbiol ; 9: 839, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29774012

RESUMEN

Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both ß-carrageenan and κ/ß-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/ß-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.

20.
ACS Chem Biol ; 13(5): 1243-1259, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29665335

RESUMEN

X-ray diffraction of native bromoperoxidase II (EC 1.11.1.18) from the brown alga Ascophyllum nodosum reveals at a resolution of 2.26 Å details of orthovanadate binding and homohexameric protein organization. Three dimers interwoven in contact regions and tightened by hydrogen-bond-clamped guanidinium stacks along with regularly aligned water molecules form the basic structure of the enyzme. Intra- and intermolecular disulfide bridges further stabilize the enzyme preventing altogether the protein from denaturing up to a temperature of 90 °C, as evident from dynamic light scattering and the on-gel ortho-dianisidine assay. Every monomer binds one equivalent of orthovanadate in a cavity formed from side chains of three histidines, two arginines, one lysine, serine, and tryptophan. Protein binding occurs primarily through hydrogen bridges and superimposed by Coulomb attraction according to thermochemical model on density functional level of theory (B3LYP/6-311++G**). The strongest attractor is the arginine side chain mimic N-methylguanidinium, enhancing in positive cooperative manner hydrogen bridges toward weaker acceptors, such as residues from lysine and serine. Activating hydrogen peroxide occurs in the thermochemical model by side-on binding in orthovanadium peroxoic acid, oxidizing bromide with virtually no activation energy to hydrogen bonded hypobromous acid.


Asunto(s)
Bromo/metabolismo , Teoría Funcional de la Densidad , Peroxidasas/metabolismo , Vanadatos/metabolismo , Difracción de Rayos X/métodos , Sitios de Unión , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA