Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Brain Sci ; 14(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38790412

RESUMEN

BACKGROUND: Up to 34% of patients with schizophrenia are resistant to several treatment trials. Lack of continuous and adequate treatment is associated with relapse, rehospitalization, a lower effect of antipsychotic therapy, and higher risk of side effects. Long-acting injectables antipsychotics (LAI APs) enhance compliance and improve clinical outcomes and quality of life in patients with schizophrenia, and thus it may be advisable to administer two LAI APs at the same time in cases of treatment-resistant schizophrenia. The purpose of this review is to summarize the available literature regarding the combined use of two LAI APs in patients with schizophrenia or other psychotic spectrum disorders. METHODS: An extensive literature search for relevant articles regarding any combination of two long-acting injectable antipsychotics has been performed from inception up to 9 February 2024, on PubMed, Scopus and APA PsycInfo, according to the PRISMA statement. Only studies reporting combination of two LAI APs and its clinical outcome in patients with schizophrenia and related disorders were selected. RESULTS: After the selection process, nine case reports, four case series and two observational retrospective studies were included in the final analysis. All patients treated with dual LAI APs reported a good response, and no new or unexpected adverse effects due to the combination of two LAIs were reported. Different drug combinations were used, and the most frequent association resulted in aripiprazole monohydrate + paliperidone palmitate once monthly (32 times). CONCLUSIONS: Our review highlights that the treatment regimen with two concurrent LAI APs is already widely used in clinical practice and is recognized as providing a promising, effective, and relatively safe therapeutic strategy for treating the schizophrenia spectrum disorders.

2.
Mol Genet Metab ; 140(3): 107705, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37837864

RESUMEN

PURPOSE: Beyond classical procedures, bioinformatic-assisted approaches and computational biology offer unprecedented opportunities for scholars. However, these amazing possibilities still need epistemological criticism, as well as standardized procedures. Especially those topics with a huge body of data may benefit from data science (DS)-assisted methods. Therefore, the current study dealt with the combined expert-assisted and DS-assisted approaches to address the broad field of muscle secretome. We aimed to apply DS tools to fix the literature research, suggest investigation targets with a data-driven approach, predict possible scenarios, and define a workflow. METHODS: Recognized scholars with expertise on myokines were invited to provide a list of the most important myokines. GeneRecommender, GeneMANIA, HumanNet, and STRING were selected as DS tools. Networks were built on STRING and GeneMANIA. The outcomes of DS tools included the top 5 recommendations. Each expert-led discussion has been then integrated with an DS-led approach to provide further perspectives. RESULTS: Among the results, 11 molecules had already been described as bona-fide myokines in literature, and 11 molecules were putative myokines. Most of the myokines and the putative myokines recommended by the DS tools were described as present in the cargo of extracellular vesicles. CONCLUSIONS: Including both supervised and unsupervised learning methods, as well as encompassing algorithms focused on both protein interaction and gene represent a comprehensive approach to tackle complex biomedical topics. DS-assisted methods for reviewing existent evidence, recommending targets of interest, and predicting original scenarios are worth exploring as in silico recommendations to be integrated with experts' ideas for optimizing molecular studies.


Asunto(s)
Músculo Esquelético , Secretoma , Humanos , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología , Biología Computacional/métodos
3.
Cell Mol Life Sci ; 80(4): 116, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016051

RESUMEN

HIV infection has become a chronic and manageable disease due to the effective use of antiretroviral therapies (ART); however, several chronic aging-related comorbidities, including cognitive impairment, remain a major public health issue. However, these mechanisms are unknown. Here, we identified that glial and myeloid viral reservoirs are associated with local myelin damage and the release of several myelin components, including the lipid sulfatide. Soluble sulfatide compromised gap junctional communication and calcium wave coordination, essential for proper cognition. We propose that soluble sulfatide could be a potential biomarker and contributor to white matter compromise observed in HIV-infected individuals even in the current ART era.


Asunto(s)
Infecciones por VIH , Sustancia Blanca , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/complicaciones , Sulfoglicoesfingolípidos , Daño Encefálico Crónico/complicaciones , Comunicación Celular
4.
Cells ; 11(15)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35954221

RESUMEN

The major barrier to cure HIV infection is the early generation and extended survival of HIV reservoirs in the circulation and tissues. Currently, the techniques used to detect and quantify HIV reservoirs are mostly based on blood-based assays; however, it has become evident that viral reservoirs remain in tissues. Our study describes a novel multi-component imaging method (HIV DNA, mRNA, and viral proteins in the same assay) to identify, quantify, and characterize viral reservoirs in tissues and blood products obtained from HIV-infected individuals even when systemic replication is undetectable. In the human brains of HIV-infected individuals under ART, we identified that microglia/macrophages and a small population of astrocytes are the main cells with integrated HIV DNA. Only half of the cells with integrated HIV DNA expressed viral mRNA, and one-third expressed viral proteins. Surprisingly, we identified residual HIV-p24, gp120, nef, vpr, and tat protein expression and accumulation in uninfected cells around HIV-infected cells suggesting local synthesis, secretion, and bystander uptake. In conclusion, our data show that ART reduces the size of the brain's HIV reservoirs; however, local/chronic viral protein secretion still occurs, indicating that the brain is still a major anatomical target to cure HIV infection.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Encéfalo , ADN , Humanos , ARN Mensajero , Proteínas Virales , Latencia del Virus
5.
Cells ; 11(9)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563712

RESUMEN

Currently, no commercially available drugs have the ability to reverse cachexia or counteract muscle wasting and the loss of lean mass. Here, we report the methodology used to develop Physiactisome-a conditioned medium released by heat shock protein 60 (Hsp60)-overexpressing C2C12 cell lines enriched with small and large extracellular vesicles. We also present evidence supporting its use in the treatment of cachexia. Briefly, we obtain a nanovesicle-based secretion by genetically modifying C2C12 cell lines with an Hsp60-overexpressing plasmid. The secretion is used to treat naïve C2C12 cell lines. Physiactisome activates the expression of PGC-1α isoform 1, which is directly involved in mitochondrial biogenesis and muscle atrophy suppression, in naïve C2C12 cell lines. Proteomic analyses show Hsp60 localisation inside isolated nanovesicles and the localisation of several apocrine and merocrine molecules, with potential benefits for severe forms of muscle atrophy. Considering that Physiactisome can be easily obtained following tissue biopsy and can be applied to autologous muscle stem cells, we propose a potential nanovesicle-based anti-cachexia drug that could mimic the beneficial effects of exercise. Thus, Physiactisome may improve patient survival and quality of life. Furthermore, the method used to add Hsp60 into nanovesicles can be used to deliver other drugs or active proteins to vesicles.


Asunto(s)
Caquexia , Chaperonina 60 , Caquexia/metabolismo , Chaperonina 60/metabolismo , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/patología , Proteómica , Calidad de Vida
6.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35328423

RESUMEN

Cachexia is a multifactorial and multi-organ syndrome that is a major cause of morbidity and mortality in late-stage chronic diseases. The main clinical features of cancer-related cachexia are chronic inflammation, wasting of skeletal muscle and adipose tissue, insulin resistance, anorexia, and impaired myogenesis. A multimodal treatment has been suggested to approach the multifactorial genesis of cachexia. In this context, physical exercise has been found to have a general effect on maintaining homeostasis in a healthy life, involving multiple organs and their metabolism. The purpose of this review is to present the evidence for the relationship between inflammatory cytokines, skeletal muscle, and fat metabolism and the potential role of exercise training in breaking the vicious circle of this impaired tissue cross-talk. Due to the wide-ranging effects of exercise training, from the body to the behavior and cognition of the individual, it seems to be able to improve the quality of life in this syndrome. Therefore, studying the molecular effects of physical exercise could provide important information about the interactions between organs and the systemic mediators involved in the overall homeostasis of the body.


Asunto(s)
Caquexia , Neoplasias , Caquexia/etiología , Caquexia/metabolismo , Caquexia/terapia , Citocinas/metabolismo , Ejercicio Físico , Humanos , Metabolismo de los Lípidos , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/metabolismo , Calidad de Vida
7.
Purinergic Signal ; 17(4): 563-576, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34542793

RESUMEN

Only recently, the role of large ionic channels such as Pannexin-1 channels and Connexin hemichannels has been implicated in several physiological and pathological conditions, including HIV infection and associated comorbidities. These channels are in a closed stage in healthy conditions, but in pathological conditions including HIV, Pannexin-1 channels and Connexin hemichannels become open. Our data demonstrate that acute and chronic HIV infection induces channel opening (Pannexin and Connexin channels), ATP release into the extracellular space, and subsequent activation of purinergic receptors in immune and non-immune cells. We demonstrated that Pannexin and Connexin channels contribute to HIV infection and replication, the long-term survival of viral reservoirs, and comorbidities such as NeuroHIV. Here, we discuss the available data to support the participation of these channels in the HIV life cycle and the potential therapeutic approach to prevent HIV-associated comorbidities.


Asunto(s)
Conexinas/metabolismo , Infecciones por VIH/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores Purinérgicos/metabolismo , Animales , Humanos
8.
Prog Neurobiol ; 206: 102157, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34455020

RESUMEN

HIV-associated neurological dysfunction is observed in more than half of the HIV-infected population, even in the current antiretroviral era. The mechanisms by which HIV mediates CNS dysfunction are not well understood but have been associated with the presence of long-lasting HIV reservoirs. In the CNS, macrophage/microglia and a small population of astrocytes harbor the virus. However, the low number of HIV-infected cells does not correlate with the high degree of damage, suggesting that mechanisms of damage amplification may be involved. Here, we demonstrate that the survival mechanism of HIV-infected cells and the apoptosis of surrounding uninfected cells is regulated by inter-organelle interactions among the mitochondria/Golgi/endoplasmic reticulum system and the associated signaling mediated by IP3 and calcium. We identified that latently HIV-infected astrocytes had elevated intracellular levels of IP3, a master regulator second messenger, which diffuses via gap junctions into neighboring uninfected astrocytes resulting in their apoptosis. In addition, using laser capture microdissection, we confirmed that bystander apoptosis of uninfected astrocytes and the survival of HIV-infected astrocytes were dependent on mitochondrial function, intracellular calcium, and IP3 signaling. Blocking gap junction channels did not prevent an increase in IP3 or inter-organelle dysfunction in HIV-infected cells but reduced the amplification of apoptosis into uninfected neighboring cells. Our data provide a mechanistic explanation for bystander damage induced by surviving infected cells that serve as viral reservoirs and provide potential targets for interventions to reduce the devastating consequences of HIV within the brain.


Asunto(s)
Infecciones por VIH , Astrocitos/metabolismo , Calcio/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Mitocondrias
9.
Biology (Basel) ; 10(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494467

RESUMEN

Skeletal muscle is a plastic and complex tissue, rich in proteins that are subject to continuous rearrangements. Skeletal muscle homeostasis can be affected by different types of stresses, including physical activity, a physiological stressor able to stimulate a robust increase in different heat shock proteins (HSPs). The modulation of these proteins appears to be fundamental in facilitating the cellular remodeling processes related to the phenomenon of training adaptations such as hypertrophy, increased oxidative capacity, and mitochondrial activity. Among the HSPs, a special attention needs to be devoted to Hsp60 and αB-crystallin (CRYAB), proteins constitutively expressed in the skeletal muscle, where their specific features could be highly relevant in understanding the impact of different volumes of training regimes on myofiber types and in explaining the complex picture of exercise-induced mechanical strain and damaging conditions on fiber population. This knowledge could lead to a better personalization of training protocols with an optimal non-harmful workload in populations of individuals with different needs and healthy status. Here, we introduce for the first time to the reader these peculiar HSPs from the perspective of exercise response, highlighting the control of their expression, biological function, and specific distribution within skeletal muscle fiber-types.

10.
FASEB J ; 35(2): e21328, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33433932

RESUMEN

To date, there are limited and incomplete data on possible sex-based differences in fiber-types of skeletal muscle and their response to physical exercise. Adult healthy male and female mice completed a single bout of endurance exercise to examine the sex-based differences of the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), heat shock protein 60 (Hsp60), interleukin 6 (IL-6) expression, as well as the Myosin Heavy Chain (MHC) fiber-type distribution in soleus and extensor digitorum longus (EDL) muscles. Our results showed for the first time that in male soleus, a muscle rich of type IIa fibers, endurance exercise activates specifically genes involved in mitochondrial biogenesis such as PGC1 α1 isoform, Hsp60 and IL-6, whereas the expression of PGC1 α2 and α3 was significantly upregulated in EDL muscle, a fast-twitch skeletal muscle, independently from the gender. Moreover, we found that the acute response of different PGC1α isoforms was muscle and gender dependent. These findings add a new piece to the huge puzzle of muscle response to physical exercise. Given the importance of these genes in the physiological response of the muscle to exercise, we strongly believe that our data could support future research studies to personalize a specific and sex-based exercise training protocol.


Asunto(s)
Actividad Motora , Músculo Esquelético/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Chaperonina 60/genética , Chaperonina 60/metabolismo , Femenino , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores Sexuales
11.
Sci Rep ; 9(1): 16890, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31729429

RESUMEN

Multiple voltage-gated Na+ (Nav) channelopathies can be ascribed to subtle changes in the Nav macromolecular complex. Fibroblast growth factor 14 (FGF14) is a functionally relevant component of the Nav1.6 channel complex, a causative link to spinocerebellar ataxia 27 (SCA27) and an emerging risk factor for neuropsychiatric disorders. Yet, how this protein:channel complex is regulated in the cell is still poorly understood. To search for key cellular pathways upstream of the FGF14:Nav1.6 complex, we have developed, miniaturized and optimized an in-cell assay in 384-well plates by stably reconstituting the FGF14:Nav1.6 complex using the split-luciferase complementation assay. We then conducted a high-throughput screening (HTS) of 267 FDA-approved compounds targeting known mediators of cellular signaling. Of the 65 hits initially detected, 24 were excluded based on counter-screening and cellular toxicity. Based on target analysis, potency and dose-response relationships, 5 compounds were subsequently repurchased for validation and confirmed as hits. Among those, the tyrosine kinase inhibitor lestaurtinib was highest ranked, exhibiting submicromolar inhibition of FGF14:Nav1.6 assembly. While providing evidence for a robust in-cell HTS platform that can be adapted to search for any channelopathy-associated regulatory proteins, these results lay the potential groundwork for repurposing cancer drugs for neuropsychopharmacology.


Asunto(s)
Antineoplásicos , Ensayos Analíticos de Alto Rendimiento/métodos , Mapas de Interacción de Proteínas/fisiología , Agonistas del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Evaluación Preclínica de Medicamentos/métodos , Factores de Crecimiento de Fibroblastos/agonistas , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/química , Células HEK293 , Humanos , Complejos Multiproteicos/agonistas , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/química , Canal de Sodio Activado por Voltaje NAV1.6/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Unión Proteica , Agonistas del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Canales de Sodio Activados por Voltaje/metabolismo
12.
Cancer Rep (Hoboken) ; 2(6): e1220, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-32729241

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a highly aggressive primary brain tumor. Currently, the suggested line of action is the surgical resection followed by radiotherapy and treatment with the adjuvant temozolomide, a DNA alkylating agent. However, the ability of tumor cells to deeply infiltrate the surrounding tissue makes complete resection quite impossible, and, in consequence, the probability of tumor recurrence is high, and the prognosis is not positive. GBM is highly heterogeneous and adapts to treatment in most individuals. Nevertheless, these mechanisms of adaption are unknown. RECENT FINDINGS: In this review, we will discuss the recent discoveries in molecular and cellular heterogeneity, mechanisms of therapeutic resistance, and new technological approaches to identify new treatments for GBM. The combination of biology and computer resources allow the use of algorithms to apply artificial intelligence and machine learning approaches to identify potential therapeutic pathways and to identify new drug candidates. CONCLUSION: These new approaches will generate a better understanding of GBM pathogenesis and will result in novel treatments to reduce or block the devastating consequences of brain cancers.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/terapia , Heterogeneidad Genética , Glioblastoma/terapia , Medicina de Precisión/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Vacunas contra el Cáncer/administración & dosificación , Quimioradioterapia Adyuvante/métodos , Evolución Clonal , Biología Computacional , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Análisis Mutacional de ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Resistencia a Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/mortalidad , Glioblastoma/patología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Aprendizaje Automático , Microtúbulos/efectos de los fármacos , Microtúbulos/patología , Modelos Genéticos , Mutación , Medicina de Precisión/tendencias , Pronóstico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
13.
J Cell Mol Med ; 21(8): 1636-1647, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28244681

RESUMEN

The aim of this study was to investigate whether nandrolone decanoate (ND) use affects testosterone production and testicular morphology in a model of trained and sedentary mice. A group of mice underwent endurance training while another set led a sedentary lifestyle and were freely mobile within cages. All experimental groups were treated with either ND or peanut oil at different doses for 6 weeks. Testosterone serum levels were measured via liquid chromatography-mass spectrometry. Western blot analysis and quantitative real-time PCR were utilized to determine gene and protein expression levels of the primary enzymes implicated in testosterone biosynthesis and gene expression levels of the blood-testis barrier (BTB) components. Immunohistochemistry and immunofluorescence were conducted for testicular morphological evaluation. The study demonstrated that moderate to high doses of ND induced a diminished serum testosterone level and altered the expression level of the key steroidogenic enzymes involved in testosterone biosynthesis. At the morphological level, ND induced degradation of the BTB by targeting the tight junction protein-1 (TJP1). ND stimulation deregulated metalloproteinase-9, metalloproteinase-2 (MMP-2) and the tissue inhibitor of MMP-2. Moreover, ND administration resulted in a mislocalization of mucin-1. In conclusion, ND abuse induces a decline in testosterone production that is unable to regulate the internalization and redistribution of TJP1 and may induce the deregulation of other BTB constituents via the inhibition of MMP-2. ND may well be considered as both a potential inducer of male infertility and a potential risk factor to a low endogenous bioavailable testosterone.


Asunto(s)
Anabolizantes/farmacología , Barrera Hematotesticular/efectos de los fármacos , Nandrolona/análogos & derivados , Condicionamiento Físico Animal , Testículo/efectos de los fármacos , Testosterona/antagonistas & inhibidores , Animales , Barrera Hematotesticular/metabolismo , Regulación de la Expresión Génica , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Mucina-1/genética , Mucina-1/metabolismo , Nandrolona/farmacología , Nandrolona Decanoato , Transporte de Proteínas/efectos de los fármacos , Conducta Sedentaria , Transducción de Señal , Testículo/metabolismo , Testosterona/biosíntesis , Inhibidores Tisulares de Metaloproteinasas/genética , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteína de la Zonula Occludens-1/metabolismo
14.
J Cell Physiol ; 232(5): 1086-1094, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27487028

RESUMEN

Conjugated linoleic acid (CLA) has been reported to improve muscle hypertrophy, steroidogenesis, physical activity, and endurance capacity in mice, although the molecular mechanisms of its actions are not completely understood. The aim of the present study was to identify whether CLA alters the expression of any of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) isoforms, and to evaluate the possible existence of fibre-type-specific hypertrophy in the gastrocnemius and plantaris muscles. Mice were randomly assigned to one of four groups: placebo sedentary, CLA sedentary, placebo trained, or CLA trained. The CLA groups were gavaged with 35 µl per day of Tonalin® FFA 80 food supplement containing CLA throughout the 6-week experimental period, whereas the placebo groups were gavaged with 35 µl sunflower oil each day. Each administered dose of CLA corresponded to approximately 0.7 g/kg or 0.5%, of the dietary daily intake. Trained groups ran 5 days per week on a Rota-Rod for 6 weeks at increasing speeds and durations. Mice were sacrificed by cervical dislocation and hind limb posterior muscle groups were dissected and used for histological and molecular analyses. Endurance training stimulated mitochondrial biogenesis by PGC1α isoforms (tot, α1, α2, and α3) but CLA supplementation did not stimulate PGC1α isoforms or mitochondrial biogenesis in trained or sedentary mice. In the plantaris muscle, CLA supplementation induced a fibre-type-specific hypertrophy of type IIx muscle fibres, which was associated with increased capillary density and was different from the fibre-type-specific hypertrophy induced by endurance exercise (of types I and IIb muscle fibres). J. Cell. Physiol. 232: 1086-1094, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Ácidos Linoleicos Conjugados/farmacología , Fibras Musculares Esqueléticas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Condicionamiento Físico Animal , Adenilato Quinasa/metabolismo , Animales , Suplementos Dietéticos , Miembro Posterior/efectos de los fármacos , Lectinas/metabolismo , Masculino , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...