Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2309636121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38573964

RESUMEN

Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.


Asunto(s)
Ecosistema , Ambiente , Transporte de Electrón , Sulfatos/química , Respiración de la Célula
2.
ISME J ; 17(9): 1406-1415, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37328571

RESUMEN

After decades studying the microbial "deep biosphere" in subseafloor oceanic crust, the growth and life strategies in this anoxic, low energy habitat remain poorly described. Using both single cell genomics and metagenomics, we reveal the life strategies of two distinct lineages of uncultivated Aminicenantia bacteria from the basaltic subseafloor oceanic crust of the eastern flank of the Juan de Fuca Ridge. Both lineages appear adapted to scavenge organic carbon, as each have genetic potential to catabolize amino acids and fatty acids, aligning with previous Aminicenantia reports. Given the organic carbon limitation in this habitat, seawater recharge and necromass may be important carbon sources for heterotrophic microorganisms inhabiting the ocean crust. Both lineages generate ATP via several mechanisms including substrate-level phosphorylation, anaerobic respiration, and electron bifurcation driving an Rnf ion translocation membrane complex. Genomic comparisons suggest these Aminicenantia transfer electrons extracellularly, perhaps to iron or sulfur oxides consistent with mineralogy of this site. One lineage, called JdFR-78, has small genomes that are basal to the Aminicenantia class and potentially use "primordial" siroheme biosynthetic intermediates for heme synthesis, suggesting this lineage retain characteristics of early evolved life. Lineage JdFR-78 contains CRISPR-Cas defenses to evade viruses, while other lineages contain prophage that may help prevent super-infection or no detectable viral defenses. Overall, genomic evidence points to Aminicenantia being well adapted to oceanic crust environments by taking advantage of simple organic molecules and extracellular electron transport.


Asunto(s)
Bacterias , Sedimentos Geológicos , Sedimentos Geológicos/microbiología , Océanos y Mares , Bacterias/genética , Bacterias/metabolismo , Agua de Mar/microbiología , Carbono/metabolismo
3.
ISME J ; 17(6): 891-902, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37012337

RESUMEN

The phyla Nitrospirota and Nitrospinota have received significant research attention due to their unique nitrogen metabolisms important to biogeochemical and industrial processes. These phyla are common inhabitants of marine and terrestrial subsurface environments and contain members capable of diverse physiologies in addition to nitrite oxidation and complete ammonia oxidation. Here, we use phylogenomics and gene-based analysis with ancestral state reconstruction and gene-tree-species-tree reconciliation methods to investigate the life histories of these two phyla. We find that basal clades of both phyla primarily inhabit marine and terrestrial subsurface environments. The genomes of basal clades in both phyla appear smaller and more densely coded than the later-branching clades. The extant basal clades of both phyla share many traits inferred to be present in their respective common ancestors, including hydrogen, one-carbon, and sulfur-based metabolisms. Later-branching groups, namely the more frequently studied classes Nitrospiria and Nitrospinia, are both characterized by genome expansions driven by either de novo origination or laterally transferred genes that encode functions expanding their metabolic repertoire. These expansions include gene clusters that perform the unique nitrogen metabolisms that both phyla are most well known for. Our analyses support replicated evolutionary histories of these two bacterial phyla, with modern subsurface environments representing a genomic repository for the coding potential of ancestral metabolic traits.


Asunto(s)
Bacterias , Evolución Biológica , Filogenia , Nitrógeno/metabolismo
4.
Nature ; 612(7941): 764-770, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477536

RESUMEN

The ocean-atmosphere exchange of CO2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton)1-3, their respiration usually is measured in bulk and treated as a 'black box' in global biogeochemical models4; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy3,5-7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO2 for its energy demands and growth may be lower than commonly assumed and variable among lineages.


Asunto(s)
Organismos Acuáticos , Archaea , Bacterias , Ciclo del Carbono , Respiración de la Célula , Plancton , Alphaproteobacteria/genética , Alphaproteobacteria/crecimiento & desarrollo , Alphaproteobacteria/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Plancton/clasificación , Plancton/genética , Plancton/crecimiento & desarrollo , Plancton/metabolismo , Agua de Mar/microbiología , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/metabolismo , Archaea/genética , Archaea/crecimiento & desarrollo , Archaea/metabolismo , Respiración de la Célula/fisiología , Fotosíntesis
5.
Front Microbiol ; 12: 749760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925263

RESUMEN

Actinorhizal plants host mutualistic symbionts of the nitrogen-fixing actinobacterial genus Frankia within nodule structures formed on their roots. Several plant-growth-promoting bacteria have also been isolated from actinorhizal root nodules, but little is known about them. We were interested investigating the in planta microbial community composition of actinorhizal root nodules using culture-independent techniques. To address this knowledge gap, 16S rRNA gene amplicon and shotgun metagenomic sequencing was performed on DNA from the nodules of Casuarina glauca. DNA was extracted from C. glauca nodules collected in three different sampling sites in Tunisia, along a gradient of aridity ranging from humid to arid. Sequencing libraries were prepared using Illumina NextEra technology and the Illumina HiSeq 2500 platform. Genome bins extracted from the metagenome were taxonomically and functionally profiled. Community structure based off preliminary 16S rRNA gene amplicon data was analyzed via the QIIME pipeline. Reconstructed genomes were comprised of members of Frankia, Micromonospora, Bacillus, Paenibacillus, Phyllobacterium, and Afipia. Frankia dominated the nodule community at the humid sampling site, while the absolute and relative prevalence of Frankia decreased at the semi-arid and arid sampling locations. Actinorhizal plants harbor similar non-Frankia plant-growth-promoting-bacteria as legumes and other plants. The data suggests that the prevalence of Frankia in the nodule community is influenced by environmental factors, with being less abundant under more arid environments.

6.
Front Microbiol ; 12: 738231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35140689

RESUMEN

Fluids circulating through oceanic crust play important roles in global biogeochemical cycling mediated by their microbial inhabitants, but studying these sites is challenged by sampling logistics and low biomass. Borehole observatories installed at the North Pond study site on the western flank of the Mid-Atlantic Ridge have enabled investigation of the microbial biosphere in cold, oxygenated basaltic oceanic crust. Here we test a methodology that applies redox-sensitive fluorescent molecules for flow cytometric sorting of cells for single cell genomic sequencing from small volumes of low biomass (approximately 103 cells ml-1) crustal fluid. We compare the resulting genomic data to a recently published paired metagenomic and metatranscriptomic analysis from the same site. Even with low coverage genome sequencing, sorting cells from less than one milliliter of crustal fluid results in similar interpretation of dominant taxa and functional profiles as compared to 'omics analysis that typically filter orders of magnitude more fluid volume. The diverse community dominated by Gammaproteobacteria, Bacteroidetes, Desulfobacterota, Alphaproteobacteria, and Zetaproteobacteria, had evidence of autotrophy and heterotrophy, a variety of nitrogen and sulfur cycling metabolisms, and motility. Together, results indicate fluorescence activated cell sorting methodology is a powerful addition to the toolbox for the study of low biomass systems or at sites where only small sample volumes are available for analysis.

7.
Environ Microbiol ; 23(7): 3923-3936, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33346395

RESUMEN

Subseafloor oceanic crust is a vast yet poorly sampled habitat for life. Recent studies suggest that microbial composition in crustal habitats is variable in space and time, but biogeographic patterns are difficult to determine due to a paucity of data. To address this, we deployed hundreds of mineral colonization experiments at and below the seafloor for 4-6 years at North Pond, a borehole observatory network in cool (<10°C) and oxic oceanic crust on the western flank of the Mid-Atlantic Ridge. The overall community composition of mineral incubations reveals that colonization patterns are site dependent, with no correlation to mineral type. Only a few members of the Thioalkalispiraceae and Thioprofundaceae exhibited a mineral preference pattern, with generally higher abundance on metal sulphides compared to silicates, while taxa of the Gammaproteobacteria and Deltaproteobacteria were common in the colonization experiments. In comparison to datasets from other crustal habitats, broader biogeographic patterns of crustal communities emerge based on crustal habitat type (surface-attached communities versus fluid communities), redox environment and possibly crustal age. These comparisons suggest successional biogeography patterning that might be used as an indicator of how recently permeable pathways were established within oceanic crust.


Asunto(s)
Bacterias , Ecosistema , Bacterias/genética , Océanos y Mares , Oxidación-Reducción , Silicatos
8.
Front Microbiol ; 10: 1983, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31551949

RESUMEN

The crustal subseafloor is the least explored and largest biome on Earth. Interrogating crustal life is difficult due to habitat inaccessibility, low-biomass and contamination challenges. Subseafloor observatories have facilitated the study of planktonic life in crustal aquifers, however, studies of life in crust-attached biofilms are rare. Here, we investigate biofilms grown on various minerals at different temperatures over 1-6 years at subseafloor observatories in the Eastern Pacific. To mitigate potential sequence contamination, we developed a new bioinformatics tool - TaxonSluice. We explore ecological factors driving community structure and potential function of biofilms by comparing our sequence data to previous amplicon and metagenomic surveys of this habitat. We reveal that biofilm community structure is driven by temperature rather than minerology, and that rare planktonic lineages colonize the crustal biofilms. Based on 16S rRNA gene overlap, we partition metagenome assembled genomes into planktonic and biofilm fractions and suggest that there are functional differences between these community types, emphasizing the need to separately examine each to accurately describe subseafloor microbe-rock-fluid processes. Lastly, we report that some rare lineages present in our warm and anoxic study site are also found in cold and oxic crustal fluids in the Mid-Atlantic Ridge, suggesting global crustal biogeography patterns.

9.
Antonie Van Leeuwenhoek ; 112(1): 75-90, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30203358

RESUMEN

Actinorhizal plants form a symbiotic association with the nitrogen-fixing actinobacteria Frankia. These plants have important economic and ecological benefits including land reclamation, soil stabilization, and reforestation. Recently, many non-Frankia actinobacteria have been isolated from actinorhizal root nodules suggesting that they might contribute to nodulation. Two Nocardia strains, BMG51109 and BMG111209, were isolated from Casuarina glauca nodules, and they induced root nodule-like structures in original host plant promoting seedling growth. The formed root nodule-like structures lacked a nodular root at the apex, were not capable of reducing nitrogen and had their cortical cells occupied with rod-shaped Nocardiae cells. Both Nocardia strains induced root hair deformation on the host plant. BMG111209 strain induced the expression of the ProCgNin:Gus gene, a plant gene involved in the early steps of the infection process and nodulation development. Nocardia strain BMG51109 produced three types of auxins (Indole-3-acetic acid [IAA], Indole-3-Byturic Acid [IBA] and Phenyl Acetic Acid [PAA]), while Nocardia BMG111209 only produced IAA. Analysis of the Nocardia genomes identified several important predicted biosynthetic gene clusters for plant phytohormones, secondary metabolites, and novel natural products. Co-infection studies showed that Nocardia strain BMG51109 plays a role as a "helper bacteria" promoting an earlier onset of nodulation. This study raises many questions on the ecological significance and functionality of Nocardia bacteria in actinorhizal symbioses.


Asunto(s)
Fagales/crecimiento & desarrollo , Nocardia/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Fagales/microbiología , Ácidos Indolacéticos/metabolismo , Nocardia/genética , Nocardia/aislamiento & purificación , Reguladores del Crecimiento de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Simbiosis
10.
Genome Announc ; 4(5)2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27635010

RESUMEN

Frankia sp. strain BR is a member of Frankia lineage Ic and is able to reinfect plants of the Casuarinaceae family. Here, we report a 5.2-Mbp draft genome sequence with a G+C content of 70.0% and 4,777 candidate protein-encoding genes.

11.
Genome Announc ; 4(4)2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27389275

RESUMEN

Frankia sp. strain EI5c is a member of Frankia lineage III, which is able to reinfect plants of the Eleagnaceae, Rhamnaceae, Myricaceae, and Gymnostoma, as well as the genus Alnus Here, we report the 6.6-Mbp draft genome sequence of Frankia sp. strain EI5c with a G+C content of 72.14 % and 5,458 candidate protein-encoding genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...