Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892431

RESUMEN

Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.


Asunto(s)
Receptores de Orexina , Orexinas , Polimorfismo de Nucleótido Simple , Humanos , Orexinas/metabolismo , Orexinas/genética , Masculino , Femenino , Persona de Mediana Edad , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Adulto , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/sangre , Estudios de Casos y Controles , Anciano , Presión Sanguínea , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/sangre
2.
Genes (Basel) ; 15(4)2024 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674417

RESUMEN

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common monogenic disorder characterized by renal cysts and progressive renal failure. In kidney diseases, adipose tissue undergoes functional changes that have been associated with increased inflammation and insulin resistance mediated by release of adipokines. Adiponectin is involved in various cellular processes, such as energy and inflammatory and oxidative processes. However, it remains to be determined whether adiponectin is involved in the concomitant metabolic dysfunctions present in PKD. In this scenario, we aimed to analyze: (a) PPARγ, ADIPOQ, ADIPOR1 and ADIPOR2 gene variations in 92 ADPKD patients through PCR-Sanger sequencing; and (b) adiponectin levels and its oligomerization state by ELISA and Western Blot. Our results indicated that: (a) 14 patients carried the PPARγ SNP, 29 patients carried the ADIPOQ SNP rs1501299, and 25 patients carried the analyzed ADIPOR1 SNPs. Finally, 82 patients carried ADIPOR2 SNPs; and (b) Adiponectin is statistically lower in ADPKD patients compared to controls, and further statistically lower in ESRD than in non-ESRD patients. An inverse relationship between adiponectin and albumin and between adiponectin and creatinine and a direct relationship between adiponectin and eGFR were found. Interestingly, significantly lower levels of adiponectin were found in patients bearing the ADIPOQ rs1501299 SNP and associated with low levels of eGFR. In conclusion, adiponectin levels and the presence of ADIPOQ rs1501299 genotype are significantly associated with a worse ADPKD phenotype, indicating that both could potentially provide important insights into the disease. Further studies are warranted to understand the pathophysiological role of adiponectin in ADPKD patients.


Asunto(s)
Adiponectina , Riñón Poliquístico Autosómico Dominante , Polimorfismo de Nucleótido Simple , Receptores de Adiponectina , Humanos , Adiponectina/genética , Adiponectina/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/metabolismo , Femenino , Masculino , Receptores de Adiponectina/genética , Persona de Mediana Edad , Adulto , PPAR gamma/genética , PPAR gamma/metabolismo
3.
Genes (Basel) ; 14(6)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37372416

RESUMEN

Polycystic Kidney Diseases (PKDs) consist of a genetically and phenotypically heterogeneous group of inherited disorders characterized by numerous renal cysts. PKDs include autosomal dominant ADPKD, autosomal recessive ARPKD and atypical forms. Here, we analyzed 255 Italian patients using an NGS panel of 63 genes, plus Sanger sequencing of exon 1 of the PKD1 gene and MPLA (PKD1, PKD2 and PKHD1) analysis. Overall, 167 patients bore pathogenic/likely pathogenic variants in dominant genes, and 5 patients in recessive genes. Four patients were carriers of one pathogenic/likely pathogenic recessive variant. A total of 24 patients had a VUS variant in dominant genes, 8 patients in recessive genes and 15 patients were carriers of one VUS variant in recessive genes. Finally, in 32 patients we could not reveal any variant. Regarding the global diagnostic status, 69% of total patients bore pathogenic/likely pathogenic variants, 18.4% VUS variants and in 12.6% of patients we could not find any. PKD1 and PKD2 resulted to be the most mutated genes; additional genes were UMOD and GANAB. Among recessive genes, PKHD1 was the most mutated gene. An analysis of eGFR values showed that patients with truncating variants had a more severe phenotype. In conclusion, our study confirmed the high degree of genetic complexity at the basis of PKDs and highlighted the crucial role of molecular characterization in patients with suspicious clinical diagnosis. An accurate and early molecular diagnosis is essential to adopt the appropriate therapeutic protocol and represents a predictive factor for family members.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Riñón Poliquístico Autosómico Recesivo , Humanos , Canales Catiónicos TRPP/genética , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Recesivo/diagnóstico , Riñón Poliquístico Autosómico Recesivo/genética , Exones , Genes Reguladores , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...