Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Healthcare (Basel) ; 11(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37761789

RESUMEN

The spread of multi-drug resistant organisms (MDROs) is increasing at an alarming rate worldwide. Among these, Carbapenemase-producing New Delhi Metallo-ß-lactamase (NDM) poses a significant clinical threat, and appropriate measures must be taken to prevent or limit its penetration into still-free territories. The present report describes two independent cases of patients from Ukraine colonized by NDM-producing Klebsiella pneumoniae and admitted to two separate wards of an acute university hospital in a territory not yet affected by Carbapenemase producers of this class. Moreover, this report illustrates the infection prevention control (IPC) strategies promptly implemented by the IPC operational team to verify the possible spread of the microorganism in the ward and avoid any possible further contamination. The identification of genes coding for Carbapenemases, performed using real-time PCR, revealed no other cases within the wards involved. These cases emphasize the importance of early case recognition of multidrug-resistant bacteria, the necessity of effective inter-hospital communication, the need for effective antimicrobial stewardship protocol, and the importance of adequate IPC policies. Additionally, we highlight the need to improve screening procedures in the case of patients from countries with a high prevalence of MDRO, as essential measures to prevent potential nosocomial outbreaks and/or endemization.

2.
PLoS One ; 15(9): e0238532, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32870934

RESUMEN

Malaria represents one of the most common infectious diseases which becoming an impellent public health problem worldwide. Antimalarial classical medications include quinine-based drugs, like chloroquine, and artesunate, a derivative of artemisinin, a molecule found in the plant Artemisia annua. Such therapeutics are very effective but show heavy side effects like drug resistance. In this study, "green" silver nanoparticles (AgNPs) have been prepared from two Artemisia species (A. abrotanum and A. arborescens), traditionally used in folk medicine as a remedy for different conditions, and their potential antimalarial efficacy have been assessed. AgNPs have been characterized by UV-Vis, dynamic light scattering and zeta potential, FTIR, XRD, TEM and EDX. The structural characterization has demonstrated the spheroidal shape of nanoparticles and dimensions under 50 nm, useful for biomedical studies. Zeta potential analysis have shown the stability and dispersion of green AgNPs in aqueous medium without aggregation. AgNPs hemocompatibility and antimalarial activity have been studied in Plasmodium falciparum cultures in in vitro experiments. The antiplasmodial effect has been assessed using increasing doses of AgNPs (0.6 to 7.5 µg/mL) on parasitized red blood cells (pRBCs). Obtained data showed that the hemocompatibility of AgNPs is related to their synthetic route and depends on the administered dose. A. abrotanum-AgNPs (1) have shown the lowest percentage of hemolytic activity on pRBCs, underlining their hemocompatibility. These results are in accordance with the lower levels of parasitemia observed after A. abrotanum-AgNPs (1) treatment respect to A. arborescens-AgNPs (2), and AgNPs (3) derived from a classical chemical synthesis. Moreover, after 24 and 48 hours of A. abrotanum-AgNPs (1) treatment, the parasite growth was locked in the ring stage, evidencing the effect of these nanoparticles to hinder the maturation of P. falciparum. The anti-malarial activity of A. abrotanum-AgNPs (1) on pRBCs was demonstrated to be higher than that of A. arborescens-AgNPs (2).


Asunto(s)
Antimaláricos/farmacología , Artemisia , Nanopartículas del Metal , Plasmodium falciparum/efectos de los fármacos , Plata/farmacología , Antimaláricos/química , Artemisia/química , Tecnología Química Verde , Humanos , Malaria Falciparum/tratamiento farmacológico , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...