Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 40(6): 1232-1247, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31882403

RESUMEN

In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In midkine-a loss-of-function mutants of both sexes, Müller glia initiate the appropriate reprogramming response to photoreceptor death by increasing expression of stem cell-associated genes, and entering the G1 phase of the cell cycle. However, transition from G1 to S phase is blocked in the absence of Midkine-a, resulting in significantly reduced proliferation and selective failure to regenerate cone photoreceptors. Failing to progress through the cell cycle, Müller glia undergo reactive gliosis, a pathological hallmark in the injured CNS of mammals. Finally, we determined that the Midkine-a receptor, anaplastic lymphoma kinase, is upstream of the HLH regulatory protein, Id2a, and of the retinoblastoma gene, p130, which regulates progression through the cell cycle. These results demonstrate that Midkine-a functions as a core component of the mechanisms that regulate proliferation of stem cells in the injured CNS.SIGNIFICANCE STATEMENT The death of retinal neurons and photoreceptors is a leading cause of vision loss. Regenerating retinal neurons is a therapeutic goal. Zebrafish can regenerate retinal neurons from intrinsic stem cells, Müller glia, and are a powerful model to understand how stem cells might be used therapeutically. Midkine-a, an injury-induced growth factor/cytokine that is expressed by Müller glia following neuronal death, is required for Müller glia to progress through the cell cycle. The absence of Midkine-a suspends proliferation and neuronal regeneration. With cell cycle progression stalled, Müller glia undergo reactive gliosis, a pathological hallmark of the mammalian retina. This work provides a unique insight into mechanisms that control the cell cycle during neuronal regeneration.


Asunto(s)
Desdiferenciación Celular/fisiología , Reprogramación Celular/fisiología , Midkina/metabolismo , Regeneración Nerviosa/fisiología , Neuroglía , Retina , Animales , Animales Modificados Genéticamente , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Retina/citología , Retina/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
2.
PLoS One ; 7(9): e44711, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970294

RESUMEN

Synaptophysin, is an abundant presynaptic protein involved in synaptic vesicle recycling and neurotransmitter release. Previous work shows that its content is significantly reduced in the rat retina by streptozotocin (STZ)-diabetes. This study tested the hypothesis that STZ-diabetes alters synaptophysin protein turnover and glycosylation in the rat retina. Whole explant retinas from male Sprague-Dawley rats were used in this study. Rats were made diabetic by a single intraperitoneal STZ injection (65 mg/kg body weight in 10 mM sodium citrate, pH 4.5). mRNA translation was measured using a (35)S-methionine labeling assay followed by synaptophysin immunoprecipitation and autoradiography. A pulse-chase study was used to determine the depletion of newly synthesized synaptophysin. Depletion of total synaptophysin was determined after treatment with cycloheximide. Mannose rich N-glycosylated synaptophysin was detected by treating retinal lysates with endoglycosidase H followed by immunoblot analysis. Synaptophysin mRNA translation was significantly increased after 1 month (p<0.001) and 2 months (p<0.05) of STZ-diabetes, compared to age-matched controls. Newly synthesized synaptophysin degradation was significantly accelerated in the retina after 1 and 2 months of diabetes compared to controls (p<0.05). Mannose rich glycosylated synaptophysin was significantly increased after 1 month of STZ-diabetes compared to controls (p<0.05).These data suggest that diabetes increases mRNA translation of synaptophysin in the retina, resulting in an accumulation of mannose rich glycosylated synaptophysin, a transient post-translational state of the protein. This diabetes-induced irregularity in post-translational processing could explain the accelerated degradation of retinal synaptophysin in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Procesamiento Proteico-Postraduccional , Retina/metabolismo , Sinaptofisina/metabolismo , Animales , Masculino , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Estreptozocina , Sinaptofisina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...