Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
medRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39108522

RESUMEN

Somatic mosaic variants contribute to focal epilepsy, but genetic analysis has been limited to patients with drug-resistant epilepsy (DRE) who undergo surgical resection, as the variants are mainly brain-limited. Stereoelectroencephalography (sEEG) has become part of the evaluation for many patients with focal DRE, and sEEG electrodes provide a potential source of small amounts of brain-derived DNA. We aimed to identify, validate, and assess the distribution of potentially clinically relevant mosaic variants in DNA extracted from trace brain tissue on individual sEEG electrodes. We enrolled a prospective cohort of eleven pediatric patients with DRE who had sEEG electrodes implanted for invasive monitoring, one of whom was previously reported. We extracted unamplified DNA from the trace brain tissue on each sEEG electrode and also performed whole-genome amplification for each sample. We extracted DNA from resected brain tissue and blood/saliva samples where available. We performed deep panel and exome sequencing on a subset of samples from each case and analysis for potentially clinically relevant candidate germline and mosaic variants. We validated candidate mosaic variants using amplicon sequencing and assessed the variant allele fraction (VAF) in amplified and unamplified electrode-derived DNA and across electrodes. We extracted DNA from >150 individual electrodes from 11 individuals and obtained higher concentrations of whole-genome amplified vs unamplified DNA. Immunohistochemistry confirmed the presence of neurons in the brain tissue on electrodes. Deep sequencing and analysis demonstrated similar depth of coverage between amplified and unamplified samples but significantly more called mosaic variants in amplified samples. In addition to the mosaic PIK3CA variant detected in a previously reported case from our group, we identified and validated four potentially clinically relevant mosaic variants in electrode-derived DNA in three patients who underwent laser ablation and did not have resected brain tissue samples available. The variants were detected in both amplified and unamplified electrode-derived DNA, with higher VAFs observed in DNA from electrodes in closest proximity to the electrical seizure focus in some cases. This study demonstrates that mosaic variants can be identified and validated from DNA extracted from trace brain tissue on individual sEEG electrodes in patients with drug-resistant focal epilepsy and in both amplified and unamplified electrode-derived DNA samples. Our findings support a relationship between the extent of regional genetic abnormality and electrophysiology, and suggest that with further optimization, this minimally invasive diagnostic approach holds promise for advancing precision medicine for patients with DRE as part of the surgical evaluation.

2.
medRxiv ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39148850

RESUMEN

Importance: Epilepsy is the most common neurological disorder of childhood. Identifying genetic diagnoses underlying epilepsy is critical to developing effective therapies and improving outcomes. Most children with non-acquired (unexplained) epilepsy remain genetically unsolved, and the utility of genome sequencing after nondiagnostic exome sequencing is unknown. Objective: To determine the diagnostic (primary) and clinical (secondary) utility of genome sequencing after nondiagnostic exome sequencing in individuals with unexplained pediatric epilepsy. Design: This cohort study performed genome sequencing and comprehensive analyses for 125 participants and available biological parents enrolled from August 2018 to May 2023, with data analysis through April 2024 and clinical return of diagnostic and likely diagnostic genetic findings. Clinical utility was evaluated. Setting: Pediatric referral center. Participants: Participants with unexplained pediatric epilepsy and previous nondiagnostic exome sequencing; biological parents when available. Exposures: Short-read genome sequencing and analysis. Main Outcomes and Measures: Primary outcome measures were the diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding, and the unique diagnostic yield of genome sequencing, defined as the percentage of participants receiving a diagnostic or likely diagnostic genetic finding that required genome sequencing. The secondary outcome measure was clinical utility of genome sequencing, defined as impact on evaluation, treatment, or prognosis for the participant or their family. Results: 125 participants (58 [46%] female) were enrolled with median age at seizure onset 3 [IQR 1.25, 8] years, including 44 (35%) with developmental and epileptic encephalopathies. The diagnostic yield of genome sequencing was 7.2% (9/125), with diagnostic genetic findings in five cases and likely diagnostic genetic findings in four cases. Among the solved cases, 7/9 (78%) required genome sequencing for variant detection (small copy number variant, three noncoding variants, and three difficult to sequence small coding variants), for a unique diagnostic yield of genome sequencing of 5.6% (7/125). Clinical utility was documented for 4/9 solved cases (44%). Conclusions and Relevance: These findings suggest that genome sequencing can have diagnostic and clinical utility after nondiagnostic exome sequencing and should be considered for patients with unexplained pediatric epilepsy. Key Points: Question: What is the utility of genome sequencing after nondiagnostic exome sequencing in individuals with unexplained pediatric epilepsy?Findings: In this cohort study of 125 individuals with unexplained pediatric epilepsy and nondiagnostic exome sequencing, genome sequencing identified diagnostic genetic findings in five cases and likely diagnostic genetic findings in four cases. Of the nine solved cases, seven required genome sequencing to solve, and four had documented clinical utility.Meaning: Genome sequencing can identify genetic diagnoses not detectable by exome sequencing and should be considered for participants with unexplained pediatric epilepsy, as first-line testing or after nondiagnostic exome sequencing.

3.
Genet Med ; 26(9): 101177, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38855852

RESUMEN

PURPOSE: Critically ill infants from marginalized populations disproportionately receive care in neonatal intensive care units (NICUs) that lack access to state-of-the-art genomic care, leading to inequitable outcomes. We sought provider perspectives to inform our implementation study (VIGOR) providing rapid genomic sequencing within these settings. METHODS: We conducted semistructured focus groups with neonatal and genetics providers at 6 NICUs at safety-net hospitals, informed by the Promoting Action on Research Implementation in Health Services framework, which incorporates evidence, context, and facilitation domains. We iteratively developed codes and themes until thematic saturation was reached. RESULTS: Regarding evidence, providers felt that genetic testing benefits infants and families. Regarding context, the major barriers identified to genomic care were genetic testing cost, lack of genetics expertise for disclosure and follow-up, and navigating the complexity of selecting and ordering genetic tests. Providers had negative feelings about the current status quo and inequity in genomic care across NICUs. Regarding facilitation, providers felt that a virtual support model such as VIGOR would address major barriers and foster family-centered care and collaboration. CONCLUSION: NICU providers at safety-net hospitals believe that access to state-of-the-art genomic care is critical for optimizing infant outcomes; yet, substantial barriers exist that the VIGOR study may address.

4.
Ann Clin Transl Neurol ; 11(6): 1643-1647, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38711225

RESUMEN

Children with developmental and epileptic encephalopathies often present with co-occurring dyskinesias. Pathogenic variants in ARX cause a pleomorphic syndrome that includes infantile epilepsy with a variety of movement disorders ranging from focal hand dystonia to generalized dystonia with frequent status dystonicus. In this report, we present three patients with severe movement disorders as part of ARX-associated epilepsy-dyskinesia syndrome, including a patient with a novel pathogenic missense variant (p.R371G). These cases illustrate diagnostic and management challenges of ARX-related disorder and shed light on broader challenges concerning epilepsy-dyskinesia syndromes.


Asunto(s)
Proteínas de Homeodominio , Trastornos del Movimiento , Factores de Transcripción , Humanos , Masculino , Femenino , Trastornos del Movimiento/genética , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/etiología , Preescolar , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Lactante , Mutación Missense , Niño
5.
NPJ Genom Med ; 9(1): 27, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582909

RESUMEN

Genome-wide sequencing and genetic matchmaker services are propelling a new era of genotype-driven ascertainment of novel genetic conditions. The degree to which reported phenotype data in discovery-focused studies address informational priorities for clinicians and families is unclear. We identified reports published from 2017 to 2021 in 10 genetics journals of novel Mendelian disorders. We adjudicated the quality and detail of the phenotype data via 46 questions pertaining to six priority domains: (I) Development, cognition, and mental health; (II) Feeding and growth; (III) Medication use and treatment history; (IV) Pain, sleep, and quality of life; (V) Adulthood; and (VI) Epilepsy. For a subset of articles, all subsequent published follow-up case descriptions were identified and assessed in a similar manner. A modified Delphi approach was used to develop consensus reporting guidelines, with input from content experts across four countries. In total, 200 of 3243 screened publications met inclusion criteria. Relevant phenotypic details across each of the 6 domains were rated superficial or deficient in >87% of papers. For example, less than 10% of publications provided details regarding neuropsychiatric diagnoses and "behavioural issues", or about the type/nature of feeding problems. Follow-up reports (n = 95) rarely contributed this additional phenotype data. In summary, phenotype information relevant to clinical management, genetic counselling, and the stated priorities of patients and families is lacking for many newly described genetic diseases. The PHELIX (PHEnotype LIsting fiX) reporting guideline checklists were developed to improve phenotype reporting in the genomic era.

6.
J Perinatol ; 44(8): 1196-1202, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38499751

RESUMEN

OBJECTIVE: To evaluate patterns of genetic testing among infants with CHD at a tertiary care center. STUDY DESIGN: We conducted a retrospective observational cohort study of infants in the NICU with suspicion of a genetic disorder. 1075 of 7112 infants admitted to BCH had genetic evaluation including 329 with CHD and 746 without CHD. 284 of 525 infants with CHD admitted to CMHH had genetic evaluation. Patterns of testing and diagnoses were compared. RESULTS: The rate of diagnosis after testing was similar for infants with or without CHD (38% [121/318] vs. 36% [246/676], p = 0.14). In a multiple logistic regression, atrioventricular septal defects were most high associated with genetic diagnosis (odds ratio 29.99, 95% confidence interval 2.69-334.12, p < 0.001). CONCLUSIONS: Infants with suspicion of a genetic disorder with CHD had similar rates of molecular diagnosis as those without CHD. These results support a role for genetic testing among NICU infants with CHD.


Asunto(s)
Pruebas Genéticas , Cardiopatías Congénitas , Unidades de Cuidado Intensivo Neonatal , Humanos , Recién Nacido , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/diagnóstico , Estudios Retrospectivos , Femenino , Masculino , Modelos Logísticos
7.
BMJ Open ; 14(2): e080529, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38320840

RESUMEN

INTRODUCTION: Rapid genomic sequencing (rGS) in critically ill infants with suspected genetic disorders has high diagnostic and clinical utility. However, rGS has primarily been available at large referral centres with the resources and expertise to offer state-of-the-art genomic care. Critically ill infants from racial and ethnic minority and/or low-income populations disproportionately receive care in safety-net and/or community settings lacking access to state-of-the-art genomic care, contributing to unacceptable health equity gaps. VIrtual GenOme CenteR is a 'proof-of-concept' implementation science study of an innovative delivery model for genomic care in safety-net neonatal intensive care units (NICUs). METHODS AND ANALYSIS: We developed a virtual genome centre at a referral centre to remotely support safety-net NICU sites predominantly serving racial and ethnic minority and/or low-income populations and have limited to no access to rGS. Neonatal providers at each site receive basic education about genomic medicine from the study team and identify eligible infants. The study team enrols eligible infants (goal n of 250) and their parents and follows families for 12 months. Enrolled infants receive rGS, the study team creates clinical interpretive reports to guide neonatal providers on interpreting results, and neonatal providers return results to families. Data is collected via (1) medical record abstraction, (2) surveys, interviews and focus groups with neonatal providers and (3) surveys and interviews with families. We aim to examine comprehensive implementation outcomes based on the Proctor Implementation Framework using a mixed methods approach. ETHICS AND DISSEMINATION: This study is approved by the institutional review board of Boston Children's Hospital (IRB-P00040496) and participating sites. Participating families are required to provide electronic written informed consent and neonatal provider consent is implied through the completion of surveys. The results will be disseminated via peer-reviewed publications and data will be made accessible per National Institutes of Health (NIH) policies. TRIAL REGISTRATION NUMBER: NCT05205356/clinicaltrials.gov.


Asunto(s)
Etnicidad , Unidades de Cuidado Intensivo Neonatal , Recién Nacido , Lactante , Niño , Humanos , Enfermedad Crítica , Grupos Minoritarios , Genómica
8.
Neurol Genet ; 10(1): e200117, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38149038

RESUMEN

Objectives: Brain-limited pathogenic somatic variants are associated with focal pediatric epilepsy, but reliance on resected brain tissue samples has limited our ability to correlate epileptiform activity with abnormal molecular pathology. We aimed to identify the pathogenic variant and map variant allele fractions (VAFs) across an abnormal region of epileptogenic brain in a patient who underwent stereoelectroencephalography (sEEG) and subsequent motor-sparing left frontal disconnection. Methods: We extracted genomic DNA from peripheral blood, brain tissue resected from peri-sEEG electrode regions, and microbulk brain tissue adherent to sEEG electrodes. Samples were mapped based on an anatomic relationship with the presumed seizure onset zone (SOZ). We performed deep panel sequencing of amplified and unamplified DNA to identify pathogenic variants with subsequent orthogonal validation. Results: We detect a pathogenic somatic PIK3CA variant, c.1624G>A (p.E542K), in the brain tissue samples, with VAF inversely correlated with distance from the SOZ. In addition, we identify this variant in amplified electrode-derived samples, albeit with lower VAFs. Discussion: We demonstrate regional mosaicism across epileptogenic tissue, suggesting a correlation between variant burden and SOZ. We also validate a pathogenic variant from individual amplified sEEG electrode-derived brain specimens, although further optimization of techniques is required.

9.
Eur J Hum Genet ; 31(12): 1357-1363, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37789085

RESUMEN

During the neonatal period, many genetic disorders present and contribute to neonatal morbidity and mortality. Genomic medicine-the use of genomic information in clinical care- has the potential to significantly reduce morbidity and mortality in the neonatal period and improve outcomes for this population. Diagnostic genomic testing for symptomatic newborns, especially rapid testing, has been shown to be feasible and have diagnostic and clinical utility, particularly in the short-term. Ongoing studies are assessing the feasibility and utility, including personal utility, of implementation in diverse populations. Genomic screening for asymptomatic newborns has also been studied, and the acceptability and feasibility of such an approach remains an active area of investigation. Emerging precision therapies, with examples even at the "n-of-1" level, highlight the promise of precision diagnostics to lead to early intervention and improve outcomes. To sustainably implement genomic medicine in neonatal care in an ethical, effective, and equitable manner, we need to ensure access to genetics and genomics knowledge, access to genomic tests, which is currently limited by payors, feasible processes for ordering these tests, and access to follow up in the clinical and research realms. Future studies will provide further insight into enablers and barriers to optimize implementation strategies.


Asunto(s)
Medicina Genómica , Medicina de Precisión , Recién Nacido , Humanos , Tamizaje Masivo , Genómica
11.
Lancet Neurol ; 22(9): 812-825, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37596007

RESUMEN

BACKGROUND: Most neonatal and infantile-onset epilepsies have presumed genetic aetiologies, and early genetic diagnoses have the potential to inform clinical management and improve outcomes. We therefore aimed to determine the feasibility, diagnostic yield, and clinical utility of rapid genome sequencing in this population. METHODS: We conducted an international, multicentre, cohort study (Gene-STEPS), which is a pilot study of the International Precision Child Health Partnership (IPCHiP). IPCHiP is a consortium of four paediatric centres with tertiary-level subspecialty services in Australia, Canada, the UK, and the USA. We recruited infants with new-onset epilepsy or complex febrile seizures from IPCHiP centres, who were younger than 12 months at seizure onset. We excluded infants with simple febrile seizures, acute provoked seizures, known acquired cause, or known genetic cause. Blood samples were collected from probands and available biological parents. Clinical data were collected from medical records, treating clinicians, and parents. Trio genome sequencing was done when both parents were available, and duo or singleton genome sequencing was done when one or neither parent was available. Site-specific protocols were used for DNA extraction and library preparation. Rapid genome sequencing and analysis was done at clinically accredited laboratories, and results were returned to families. We analysed summary statistics for cohort demographic and clinical characteristics and the timing, diagnostic yield, and clinical impact of rapid genome sequencing. FINDINGS: Between Sept 1, 2021, and Aug 31, 2022, we enrolled 100 infants with new-onset epilepsy, of whom 41 (41%) were girls and 59 (59%) were boys. Median age of seizure onset was 128 days (IQR 46-192). For 43 (43% [binomial distribution 95% CI 33-53]) of 100 infants, we identified genetic diagnoses, with a median time from seizure onset to rapid genome sequencing result of 37 days (IQR 25-59). Genetic diagnosis was associated with neonatal seizure onset versus infantile seizure onset (14 [74%] of 19 vs 29 [36%] of 81; p=0·0027), referral setting (12 [71%] of 17 for intensive care, 19 [44%] of 43 non-intensive care inpatient, and 12 [28%] of 40 outpatient; p=0·0178), and epilepsy syndrome (13 [87%] of 15 for self-limited epilepsies, 18 [35%] of 51 for developmental and epileptic encephalopathies, 12 [35%] of 34 for other syndromes; p=0·001). Rapid genome sequencing revealed genetic heterogeneity, with 34 unique genes or genomic regions implicated. Genetic diagnoses had immediate clinical utility, informing treatment (24 [56%] of 43), additional evaluation (28 [65%]), prognosis (37 [86%]), and recurrence risk counselling (all cases). INTERPRETATION: Our findings support the feasibility of implementation of rapid genome sequencing in the clinical care of infants with new-onset epilepsy. Longitudinal follow-up is needed to further assess the role of rapid genetic diagnosis in improving clinical, quality-of-life, and economic outcomes. FUNDING: American Academy of Pediatrics, Boston Children's Hospital Children's Rare Disease Cohorts Initiative, Canadian Institutes of Health Research, Epilepsy Canada, Feiga Bresver Academic Foundation, Great Ormond Street Hospital Charity, Medical Research Council, Murdoch Children's Research Institute, National Institute of Child Health and Human Development, National Institute for Health and Care Research Great Ormond Street Hospital Biomedical Research Centre, One8 Foundation, Ontario Brain Institute, Robinson Family Initiative for Transformational Research, The Royal Children's Hospital Foundation, University of Toronto McLaughlin Centre.


Asunto(s)
Epilepsia , Convulsiones Febriles , Masculino , Femenino , Recién Nacido , Humanos , Niño , Proyectos Piloto , Estudios de Cohortes , Estudios de Factibilidad , Epilepsia/diagnóstico , Epilepsia/genética , Ontario
12.
JAMA Netw Open ; 6(7): e2324380, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37471090

RESUMEN

Importance: Genomic advances inform our understanding of epilepsy and can be translated to patients as precision diagnoses that influence clinical treatment, prognosis, and counseling. Objective: To delineate the genetic landscape of pediatric epilepsy and clinical utility of genetic diagnoses for patients with epilepsy. Design, Setting, and Participants: This cohort study used phenotypic data from medical records and treating clinicians at a pediatric hospital to identify patients with unexplained pediatric-onset epilepsy. Exome sequencing was performed for 522 patients and available biological parents, and sequencing data were analyzed for single nucleotide variants (SNVs) and copy number variants (CNVs). Variant pathogenicity was assessed, patients were provided with their diagnostic results, and clinical utility was evaluated. Patients were enrolled from August 2018 to October 2021, and data were analyzed through December 2022. Exposures: Phenotypic features associated with diagnostic genetic results. Main Outcomes and Measures: Main outcomes included diagnostic yield and clinical utility. Diagnostic findings included variants curated as pathogenic, likely pathogenic (PLP), or diagnostic variants of uncertain significance (VUS) with clinical features consistent with the involved gene's associated phenotype. The proportion of the cohort with diagnostic findings, the genes involved, and their clinical utility, defined as impact on clinical treatment, prognosis, or surveillance, are reported. Results: A total of 522 children (269 [51.5%] male; mean [SD] age at seizure onset, 1.2 [1.4] years) were enrolled, including 142 children (27%) with developmental epileptic encephalopathy and 263 children (50.4%) with intellectual disability. Of these, 100 participants (19.2%) had identifiable genetic explanations for their seizures: 89 participants had SNVs (87 germline, 2 somatic mosaic) involving 69 genes, and 11 participants had CNVs. The likelihood of identifying a genetic diagnosis was highest in patients with intellectual disability (adjusted odds ratio [aOR], 2.44; 95% CI, 1.40-4.26), early onset seizures (aOR, 0.93; 95% CI, 0.88-0.98), and motor impairment (aOR, 2.19; 95% CI 1.34-3.58). Among 43 patients with apparently de novo variants, 2 were subsequently determined to have asymptomatic parents harboring mosaic variants. Of 71 patients who received diagnostic results and were followed clinically, 29 (41%) had documented clinical utility resulting from their genetic diagnoses. Conclusions and Relevance: These findings suggest that pediatric-onset epilepsy is genetically heterogeneous and that some patients with previously unexplained pediatric-onset epilepsy had genetic diagnoses with direct clinical implications.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Masculino , Femenino , Humanos , Estudios de Cohortes , Secuenciación del Exoma , Discapacidad Intelectual/epidemiología , Epilepsia/diagnóstico , Epilepsia/genética , Convulsiones
13.
Neurobiol Dis ; 181: 106104, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972791

RESUMEN

Over the past decade, there has been tremendous progress in understanding brain somatic mosaicism in epilepsy in the research setting. Access to resected brain tissue samples from patients with medically refractory epilepsy undergoing epilepsy surgery has been key to making these discoveries. In this review, we discuss the gap between making discoveries in the research setting and bringing results back to the clinical setting. Current clinical genetic testing mainly uses clinically accessible tissue samples, like blood and saliva, and can detect inherited and de novo germline variants and potentially non-brain-limited mosaic variants that have resulted from post-zygotic mutation (also called "somatic mutations"). Methods developed in the research setting to detect brain-limited mosaic variants using brain tissue samples need to be further translated and validated in the clinical setting, which will allow post-resection brain tissue genetic diagnoses. However, obtaining a genetic diagnosis after surgery for refractory focal epilepsy, when brain tissue samples are available, is arguably "too late" to guide precision management. Emerging methods using cerebrospinal fluid (CSF) and stereoelectroencephalography (SEEG) electrodes hold promise for establishing genetic diagnoses pre-resection without the need for actual brain tissue. In parallel, development of curation rules for interpreting the pathogenicity of mosaic variants, which have unique considerations compared to germline variants, will assist clinically accredited laboratories and epilepsy geneticists in making genetic diagnoses. Returning results of brain-limited mosaic variants to patients and their families will end their diagnostic odyssey and advance epilepsy precision management.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia , Humanos , Mosaicismo , Epilepsia/genética , Epilepsia/cirugía , Encéfalo/cirugía , Mutación , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía
14.
J Perinatol ; 43(7): 963-967, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36774516

RESUMEN

Genetic disorders are a leading cause of morbidity and mortality in infants admitted to neonatal intensive care units. This population has immense potential to benefit from genomic medicine, as early precision diagnosis is critical to early personalized management. However, the implementation of genomic medicine in neonatology thus far has arguably worsened health inequities, and strategies are urgently needed to achieve equitable access to genomics in neonatal care. In this perspective, we demonstrate the utility of genomic sequencing in critically ill infants and highlight three key recommendations to advance equitable access: recruitment of underrepresented populations, education of non-genetics providers to empower practice of genomic medicine, and development of innovative infrastructure to implement genomic medicine across diverse settings.


Asunto(s)
Unidades de Cuidado Intensivo Neonatal , Neonatología , Recién Nacido , Lactante , Humanos , Enfermedad Crítica/terapia , Medicina Genómica , Hospitalización
15.
J Perinatol ; 43(2): 248-252, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35750755

RESUMEN

Rapid genomic sequencing has been shown to have a high diagnostic yield for critically ill infants, with multiple research studies demonstrating both diagnostic and clinical utility. However, clinical implementation of rapid sequencing in the neonatal intensive care unit (NICU), as well as other aspects of genomic medicine such as precision therapy, may be challenging. We describe the Neonatal Genomics Program, developed at our institution as a multidisciplinary approach to improve clinical genetic diagnosis and outcomes for infants in our NICU through genomic medicine. The creation of a dedicated program implementing genomic medicine to improve care in the NICU allows not only for improved access to genomic sequencing for rapid diagnosis, but also advancement of rare disease research and precision therapeutics. Ongoing efforts will help to define an optimal approach to genomic medicine in the NICU context.


Asunto(s)
Medicina Genómica , Unidades de Cuidado Intensivo Neonatal , Recién Nacido , Lactante , Humanos , Genómica
16.
NPJ Genom Med ; 7(1): 51, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064943

RESUMEN

Genomic sequencing is a powerful diagnostic tool in critically ill infants, but performing exome or genome sequencing (ES/GS) in the context of a research study is different from implementing these tests clinically. We investigated the integration of rapid ES into routine clinical care after a pilot research study in a Level IV Neonatal Intensive Care Unit (NICU). We performed a retrospective cohort analysis of infants admitted with suspected genetic disorders to the NICU from December 1, 2018 to March 31, 2021 and compared results to those obtained from a previous research study cohort (March 1, 2017 to November 30, 2018). Clinical rapid ES was performed in 80/230 infants (35%) with a suspected genetic disorder and identified a genetic diagnosis in 22/80 infants (28%). The majority of diagnoses acutely impacted clinical management (14/22 (64%)). Compared to the previous research study, clinically integrated rapid ES had a significantly lower diagnostic yield and increased time from NICU admission and genetics consult to ES report, but identified four genetic diagnoses that may have been missed by the research study selection criteria. Compared to other genetic tests, rapid ES had similar or higher diagnostic yield and similar or decreased time to result. Overall, rapid ES was utilized in the NICU after the pilot research study, often as the first-tier sequencing test, and could identify the majority of disease-causing variants, shorten the diagnostic odyssey, and impact clinical care. Based on our experience, we have identified strategies to optimize the clinical implementation of rapid ES in the NICU.

17.
Genes (Basel) ; 12(11)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34828306

RESUMEN

Autism spectrum disorder (ASD) is a genetically heterogenous neurodevelopmental disorder. In the early years of next-generation sequencing, de novo germline variants were shown to contribute to ASD risk. These germline mutations are present in all of the cells of an affected individual and can be detected in any tissue, including clinically accessible DNA sources such as blood or saliva. In recent years, studies have also implicated de novo somatic variants in ASD risk. These somatic mutations arise postzygotically and are present in only a subset of the cells of an affected individual. Depending on the developmental time and progenitor cell in which a somatic mutation occurs, it may be detectable in some tissues and not in others. Somatic mutations detectable at relatively low sequencing coverage in clinically accessible tissues are suggested to contribute to 3-5% of simplex ASD diagnoses, and "brain limited" somatic mutations have been identified in postmortem ASD brain tissue. Somatic mutations likely represent the genetic diagnosis in a proportion of otherwise unexplained individuals with ASD, and brain limited somatic mutations can be used as markers to discover risk genes, cell types, brain regions, and cellular pathways important for ASD pathogenesis and to potentially target for therapeutics.


Asunto(s)
Trastorno del Espectro Autista/genética , Mosaicismo , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/psicología , Trastorno del Espectro Autista/terapia , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias
18.
Neurotherapeutics ; 18(3): 1548-1563, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34608615

RESUMEN

Malformations of cortical development (MCDs) represent a range of neurodevelopmental disorders that are collectively common causes of developmental delay and epilepsy, especially refractory childhood epilepsy. Initial treatment with antiseizure medications is empiric, and consideration of surgery is the standard of care for eligible patients with medically refractory epilepsy. In the past decade, advances in next generation sequencing technologies have accelerated progress in understanding the genetic etiologies of MCDs, and precision therapies for focal MCDs are emerging. Notably, mutations that lead to abnormal activation of the mammalian target of rapamycin (mTOR) pathway, which provides critical control of cell growth and proliferation, have emerged as a common cause of malformations. These include tuberous sclerosis complex (TSC), hemimegalencephaly (HME), and some types of focal cortical dysplasia (FCD). TSC currently represents the best example for the pathway from gene discovery to relatively safe and efficacious targeted therapy for epilepsy related to MCDs. Based on extensive pre-clinical and clinical data, the mTOR inhibitor everolimus is currently approved for the treatment of focal refractory seizures in patients with TSC. Although clinical studies are just emerging for FCD and HME, we believe the next decade will bring significant advancements in precision therapies for epilepsy related to these and other MCDs.


Asunto(s)
Epilepsia/genética , Epilepsia/terapia , Inhibidores mTOR/uso terapéutico , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/terapia , Medicina de Precisión/métodos , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Epilepsia/epidemiología , Everolimus/farmacología , Everolimus/uso terapéutico , Humanos , Inhibidores mTOR/farmacología , Malformaciones del Desarrollo Cortical/epidemiología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Vigabatrin/farmacología , Vigabatrin/uso terapéutico
19.
Pediatr Blood Cancer ; 68(8): e28935, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33694260

RESUMEN

INTRODUCTION: Intracranial germ cell tumors (IGCTs) are rare tumors of the central nervous system with peak incidence around puberty. Given the developmental origins of IGCTs, we investigated the prevalence of neurodevelopmental disorders (NDDs) in patients with IGCTs and characterized outcomes for patients with NDD and IGCTs. METHODS: A retrospective review of medical records was conducted for 111 patients diagnosed with IGCTs between 1998 and 2018 and evaluated at the Massachusetts General Hospital. Kaplan-Meier method and log-rank test was used for survival analyses. Cox regression analyses were performed for parameters associated with progression-free survival (PFS). RESULTS: Median age at IGCT diagnosis was 12.8 years (range: 4.3-21.7) and median follow-up was 6.5 years (range: 0.2-20.5). Eighteen patients were diagnosed with NDDs prior to IGCT diagnosis, including five patients with autism spectrum disorder (ASD). Of the 67 patients with pure germinomas, four (6.0 %) had prior ASD diagnoses. Patients with NDD had significantly inferior PFS in the nongerminomatous germ cell tumor (NGGCT) cohort. On univariate and multivariable analyses, craniospinal irradiation (CSI) was significantly associated with improved PFS in the NGGCT cohort. CONCLUSIONS: Our study found an ASD prevalence in the pure germinoma cohort more than threefold greater than the national prevalence, suggesting an association between ASD and pure germinomas. Furthermore, patients with NDD and NGGCT had worse PFS, possibly due to fewer patients with NDD receiving CSI. Future prospective studies with larger cohorts are needed to examine associations between NDDs and IGCTs, and further characterize outcomes for patients with NDDs and IGCTs.


Asunto(s)
Trastorno del Espectro Autista , Neoplasias Encefálicas , Neoplasias de Células Germinales y Embrionarias , Trastornos del Neurodesarrollo , Adolescente , Trastorno del Espectro Autista/epidemiología , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/terapia , Niño , Preescolar , Germinoma , Humanos , Masculino , Neoplasias de Células Germinales y Embrionarias/epidemiología , Neoplasias de Células Germinales y Embrionarias/terapia , Estudios Prospectivos , Estudios Retrospectivos , Neoplasias Testiculares , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...