Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3980, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730231

RESUMEN

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.


Asunto(s)
Núcleo Caudado , Corteza Prefontal Dorsolateral , Hipocampo , Sitios de Carácter Cuantitativo , Esquizofrenia , Caracteres Sexuales , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Femenino , Masculino , Hipocampo/metabolismo , Núcleo Caudado/metabolismo , Corteza Prefontal Dorsolateral/metabolismo , Adulto , Transcriptoma , Perfilación de la Expresión Génica , Factores Sexuales , Cromosomas Humanos X/genética , Corteza Prefrontal/metabolismo
2.
Am J Psychiatry ; : appiajp20220723, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37915216

RESUMEN

OBJECTIVE: Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs). METHODS: VFOs were generated from postmortem dural fibroblast-derived iPSCs of four individuals with schizophrenia and four neurotypical control individuals for whom postmortem caudate genotypes and transcriptomic data were profiled in the BrainSeq neurogenomics consortium. Individuals were selected such that the two groups had nonoverlapping schizophrenia polygenic risk scores (PRSs). RESULTS: Single-cell RNA sequencing analyses of VFOs revealed differences in developmental trajectory between schizophrenia and control individuals in which inhibitory neuronal cells from the patients exhibited accelerated maturation. Furthermore, upregulated genes in inhibitory neurons in schizophrenia VFOs showed a significant overlap with upregulated genes in postmortem caudate tissue of individuals with schizophrenia compared with control individuals, including the donors of the iPSC cohort. CONCLUSIONS: The findings suggest that striatal neurons derived from high-PRS individuals with schizophrenia carry abnormalities that originated during early brain development and that the VFO model can recapitulate disease-relevant cell type-specific neurodevelopmental phenotypes in a dish.

3.
eNeuro ; 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35868859

RESUMEN

X-linked Dystonia-Parkinsonism (XDP) is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. The mechanisms underlying regional differences in degeneration and adult onset are unknown. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due, in part, to a partial loss of TAF1 function. A disease-specific SINE-VNTR-Alu (SVA) retrotransposon insertion occurs within intron 32 of TAF1, a subunit of TFIID involved in transcription initiation. While all XDP males are usually clinically affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight iPSC lines from three XDP female carrier individuals for X chromosome inactivation status and identified clonal lines that express either the wild-type X or XDP haplotype. Furthermore, we characterized XDP-relevant transcript expression in neurotypical humans, and found that SVA-F expression decreases after 30 years of age in the brain and that TAF1 is decreased in most female samples. Uniquely in the caudate nucleus, TAF1 expression is not sexually dimorphic and decreased after adolescence. These findings indicate that regional-, age- and sex-specific mechanisms regulate TAF1, highlighting the importance of disease-relevant models and postmortem tissue. We propose that the decreased TAF1 expression in the adult caudate may synergize with the XDP-specific partial loss of TAF1 function in patients, thereby passing a minimum threshold of TAF1 function, and triggering degeneration in the neostriatum.Significance StatementXDP is an inherited, X-linked, adult-onset movement disorder characterized by degeneration in the neostriatum. No therapeutics alter disease progression. Developing therapeutics requires a deeper understanding of how XDP-relevant features vary in health and disease. XDP is possibly due to a partial loss of TAF1 function. While all XDP males are usually affected, females are heterozygous carriers generally not manifesting the full syndrome. As a resource for disease modeling, we characterized eight stem cell lines from XDP female carrier individuals. Furthermore, we found that, uniquely in the caudate nucleus, TAF1 expression decreases after adolescence in healthy humans. We hypothesize that the decrease of TAF1 after adolescence in human caudate, in general, may underlie the vulnerability of the adult neostriatum in XDP.

4.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344511

RESUMEN

NF-κB signalling is crucial for cellular responses to inflammation but is also associated with the hypoxia response. NF-κB and hypoxia inducible factor (HIF) transcription factors possess an intense molecular crosstalk. Although it is known that HIF-1α modulates NF-κB transcriptional response, very little is understood regarding how HIF-1ß contributes to NF-κB signalling. Here, we demonstrate that HIF-1ß is required for full NF-κB activation in cells following canonical and non-canonical stimuli. We found that HIF-1ß specifically controls TRAF6 expression in human cells but also in Drosophila melanogaster. HIF-1ß binds to the TRAF6 gene and controls its expression independently of HIF-1α. Furthermore, exogenous TRAF6 expression is able to rescue all of the cellular phenotypes observed in the absence of HIF-1ß. These results indicate that HIF-1ß is an important regulator of NF-κB with consequences for homeostasis and human disease.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Proteínas de Drosophila/metabolismo , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Biomarcadores , Línea Celular , Supervivencia Celular/genética , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , ARN Interferente Pequeño , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/genética
5.
Cells ; 7(8)2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096845

RESUMEN

Non-canonical NF-κB signalling plays important roles in the development and function of the immune system but it also is deregulated in a number of inflammatory diseases. Although, NF-κB and HIF crosstalk has been documented, this has only been described following canonical NF-κB stimulation, involving RelA/p50 and the HIF-1 dimer. Here, we report that the non-canonical inducer TNFSF14/LIGHT leads to HIF induction and activation in cancer cells. We demonstrate that only HIF-2α is induced at the transcriptional level following non-canonical NF-κB activation, via a mechanism that is dependent on the p52 subunit. Furthermore, we demonstrate that p52 can bind to the HIF-2α promoter in cells. These results indicate that non-canonical NF-κB can lead to HIF signalling implicating HIF-2α as one of the downstream effectors of this pathway in cells.

6.
Biol Reprod ; 98(4): 532-542, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29329412

RESUMEN

Following proliferation of oogonia in mammals, great numbers of germ cells are discarded, primarily by apoptosis, while the remainder form primordial follicles (the ovarian reserve) that determine fertility and reproductive lifespan. More massive, rapid, and essentially total loss of oocytes, however, occurs when the transcription factor Lhx8 is ablated-though the cause and mechanism of germ cell loss from the Lhx8-/- ovaries has been unknown. We found that Lhx8-/- ovaries maintain the same number of germ cells throughout embryonic development; rapid decrease in the pool of oocytes starts shortly before birth. The loss results from activation of autophagy, which becomes overwhelming within the first postnatal week, with extracellular matrix proteins filling the space previously occupied by follicles to produce a fibrotic ovary. Associated with this process, as early as a few days before birth, Lhx8-/- oocytes failed to repair DNA damage-which normally occurs when meiosis is initiated during embryonic development; and DNA damage repair genes were downregulated throughout the oocyte short lifespan. Based on gene expression analyses and morphological changes, we propose a model in which lineage-restricted failure of DNA repair triggers germ cell autophagy, causing premature depletion of the ovarian reserve in Lhx8-/- mice.


Asunto(s)
Autofagia/fisiología , Daño del ADN/fisiología , Proteínas con Homeodominio LIM/metabolismo , Oocitos/metabolismo , Factores de Transcripción/metabolismo , Animales , Apoptosis/fisiología , Femenino , Proteínas con Homeodominio LIM/genética , Meiosis , Ratones , Ratones Noqueados , Oogénesis/fisiología , Oogonios/metabolismo , Reserva Ovárica/fisiología , Factores de Transcripción/genética
7.
Biomedicines ; 5(2)2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28536364

RESUMEN

Cancer is often characterised by the presence of hypoxia and inflammation. Paramount to the mechanisms controlling cellular responses under such stress stimuli, are the transcription factor families of Hypoxia Inducible Factor (HIF) and Nuclear Factor of κ-light-chain-enhancer of activated B cells (NF-κB). Although, a detailed understating of how these transcription factors respond to their cognate stimulus is well established, it is now appreciated that HIF and NF-κB undergo extensive crosstalk, in particular in pathological situations such as cancer. Here, we focus on the current knowledge on how HIF is activated by inflammation and how NF-κB is modulated by hypoxia. We summarise the evidence for the possible mechanism behind this activation and how HIF and NF-κB function impacts cancer, focusing on colorectal, breast and lung cancer. We discuss possible new points of therapeutic intervention aiming to harness the current understanding of the HIF-NF-κB crosstalk.

8.
Cells ; 6(1)2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28304334

RESUMEN

Hypoxia is not only a developmental cue but also a stress and pathological stimulus in many human diseases. The response to hypoxia at the cellular level relies on the activity of the transcription factor family, hypoxia inducible factor (HIF). HIF-1 is responsible for the acute response and transactivates a variety of genes involved in cellular metabolism, cell death, and cell growth. Here, we show that hypoxia results in increased mRNA levels for human lysine (K)-specific demethylase 2 (KDM2) family members, KDM2A and KDM2B, and also for Drosophila melanogaster KDM2, a histone and protein demethylase. In human cells, KDM2 family member's mRNA levels are regulated by HIF-1 but not HIF-2 in hypoxia. Interestingly, only KDM2A protein levels are significantly induced in a HIF-1-dependent manner, while KDM2B protein changes in a cell type-dependent manner. Importantly, we demonstrate that in human cells, KDM2A regulation by hypoxia and HIF-1 occurs at the level of promoter, with HIF-1 binding to the KDM2A promoter being required for RNA polymerase II recruitment. Taken together, these results demonstrate that KDM2 is a novel HIF target that can help coordinate the cellular response to hypoxia. In addition, these results might explain why KDM2 levels are often deregulated in human cancers.

9.
Cells ; 5(1)2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-27005664

RESUMEN

As Nuclear Factor-κB (NF-κB) is a major transcription factor responding to cellular stress, it is perhaps not surprising that is activated by hypoxia, or decreased oxygen availability. However, how NF-κB becomes activated in hypoxia is still not completely understood. Several mechanisms have been proposed and this review will focus on the main findings highlighting the molecules that have been identified in the process of hypoxia induced NF-κB. In addition, we will discuss the role of NF-κB in the control of the cellular response to hypoxia.

10.
FEBS J ; 283(3): 413-24, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26513405

RESUMEN

Hypoxia and inflammation have been associated with a number of pathological conditions, in particular inflammatory diseases. While hypoxia is mainly associated with the activation of hypoxia-inducible factors (HIFs), inflammation activates the family of transcription factor called nuclear factor-kappa B (NF-κB). An extensive crosstalk between these two main molecular players involved in hypoxia and inflammation has been demonstrated. This crosstalk includes common activating stimuli, shared regulators and targets. In this review, we discuss the current understanding of the role of NF-κB and HIF in the context of the immune response. We review the crosstalk between HIF and NF-κB in the control of the immune response in different immune cell types including macrophages, neutrophils and B and T cells. Furthermore the importance of the molecular crosstalk between HIFs and NF-κB for a variety of medical conditions will be discussed.


Asunto(s)
Factor 1 Inducible por Hipoxia/metabolismo , Inmunidad/inmunología , FN-kappa B/metabolismo , Animales , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA