Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insects ; 14(11)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37999055

RESUMEN

Searching for artificial diets positively affecting the survival, immune and antioxidant systems of honey bees is one of main challenges occurring in beekeeping. Among nutrients, lipids play a significant role in insect nutrition as structural components in cell membranes, energy sources and reserves, and are involved in many physiological processes. In this context, the aim of this work was to investigate the effect of 0.5% and 1% coconut oil-enriched diet administration on newly emerged and forager bees survival rate, feed intake, immune system, antioxidant system and both fat and vitellogenin content. In newly emerged bees, supplementation with 1% coconut oil determined a decrease in feed consumption, an increase in survival rate from the 3rd to 14th day of feeding, a short-term decrease in phenoloxidase activity, an increase in body fat and no differences in vitellogenin content. Conversely, supplementation with 0.5% coconut oil determined an increase in survival rate from the 3rd to 15th day of feeding and an increase in fat content in the long term (i.e., 20 days). Regarding the forager bee diet, enrichment with 0.5% and 1% coconut oil only determined an increase in fat content. Therefore, supplementation with coconut oil in honey bee diets at low percentages (0.5 and 1%) determines fat gain. Further investigations to evaluate the use of such supplement foods to prevent the fat loss of weak families during winter are desirable.

2.
ACS Appl Mater Interfaces ; 15(40): 46655-46667, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37753951

RESUMEN

Membrane proteins are among the most difficult to study as they are embedded in the cellular membrane, a complex and fragile environment with limited experimental accessibility. To study membrane proteins outside of these environments, model systems are required that replicate the fundamental properties of the cellular membrane without its complexity. We show here a self-assembled lipid bilayer nanoarchitecture on a solid support that is stable for several days at room temperature and allows the measurement of insect olfactory receptors at the single-channel level. Using an odorant binding protein, we capture airborne ligands and transfer them to an olfactory receptor from Drosophila melanogaster (OR22a) complex embedded in the lipid membrane, reproducing the complete olfaction process in which a ligand is captured from air and transported across an aqueous reservoir by an odorant binding protein and finally triggers a ligand-gated ion channel embedded in a lipid bilayer, providing direct evidence for ligand capture and olfactory receptor triggering facilitated by odorant binding proteins. This model system presents a significantly more user-friendly and robust platform to exploit the extraordinary sensitivity of insect olfaction for biosensing. At the same time, the platform offers a new opportunity for label-free studies of the olfactory signaling pathways of insects, which still have many unanswered questions.

3.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36555186

RESUMEN

The occurrence of the honeybee caste polyphenism arises when a change in diet is transduced into cellular metabolic responses, resulting in a developmental shift mediated by gene expression. The aim of this investigation was to detect and describe the expression profile of water-soluble proteases during the ontogenesis of honeybee worker-fate larvae. The extraction of insect homogenates was followed by the electrophoretic separation of the protein extract in polyacrylamide gels under semi-denaturing condition, precast with gelatin, pollen, or royal jelly protein extracts. The worker-fate honeybee larva showed a proteolytic pattern that varied with aging, and a protease with the highest activity at 72 h after hatching was named PS4. PS4 has a molecular weight of 45 kDa, it remained active until cell sealing, and its enzymatic properties suggest a serine-proteinase nature. To define the process that originates a queen-fate larvae, royal jelly and pollen were analysed, but PS4 was not detected in either of them. The effect of food on the PS4 was investigated by mixing crude extracts of queen and worker-fate larvae with pollen and royal jelly, respectively. Only royal jelly inhibited PS4 in worker-fate larvae. Taken together, our data suggest that PS4 could be involved in caste differentiation.


Asunto(s)
Endopeptidasas , Serina Proteasas , Abejas , Animales , Larva/metabolismo , Endopeptidasas/metabolismo , Electroforesis , Serina Proteasas/metabolismo , Proteínas de Insectos/metabolismo , Concentración de Iones de Hidrógeno
4.
Biosens Bioelectron ; 203: 114024, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35114467

RESUMEN

Membrane proteins are among the most important drug targets. To improve drug design, it is critical to study membrane proteins. However, due to the myriad roles fulfilled by the cellular membrane, it is a highly complex environment and challenging to study. Tethered membranes reproduce the basic physicochemical properties of the cellular membrane without its inherent complexity. The high electrical resistance and stability makes them ideal to study membrane proteins, particularly ion channels. However, due to the close proximity of the membrane to the support and the reduced fluidity and high packing density, they are unsuitable to study larger membrane proteins. We present here a tethered membrane system which adresses these challenges, allowing the functional reconstitution of the odorant receptor coreceptor from Drosophila melanogaster, a tetrameric ionotropic receptor was incorporated and its sensitivity to various ligands was examined via electrochemical impedance spectroscopy and atomic force microscopy.


Asunto(s)
Técnicas Biosensibles , Receptores Odorantes , Animales , Drosophila melanogaster/metabolismo , Técnicas Electroquímicas , Membrana Dobles de Lípidos/química , Receptores Odorantes/genética
5.
Curr Biol ; 32(5): 951-962.e7, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35065682

RESUMEN

(E)-ß-farnesene (EBF) is an important chemical cue mediating interactions between plants, aphids, and natural enemies. This chemical has two origins, being secreted by aphid as an alarm pheromone and also produced by the attacked plants as a semiochemical attracting natural enemies. Despite the important role of this volatile chemical, little is known on the molecular mechanisms mediating the attraction of natural enemies to EBF. Here, we first verified that the larvae and adults of aphid predator hoverfly Eupeodes corollae detect and are attracted to EBF. Then, we found a neuron housed in type III basiconic sensilla of adult antenna responding to EBF. We further verified that in both adults and larvae odorant receptor EcorOR3 and odorant-binding protein EcorOBP15 mediate detection of EBF and structurally similar volatiles. Finally, we provide evidence that larvae of E. corollae may use aphid-derived EBF for prey location in the short-range, whereas adults could detect plant-derived EBF to find attacked plants from longer distances. Thus, while dissecting the molecular basis for attraction to EBF produced by two different sources, our results may find potential applications in integrated aphid management approaches.


Asunto(s)
Áfidos , Dípteros , Sesquiterpenos , Animales , Áfidos/fisiología , Larva/metabolismo , Feromonas/metabolismo , Sesquiterpenos/metabolismo
6.
Insects ; 12(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34442308

RESUMEN

Aphid odorant-binding protein 9 is almost exclusively expressed in antennae and is well conserved between different aphid species. In order to investigate its function, we have expressed this protein and measured ligand-binding affinities to a number of common natural compounds. The best ligands are long-chain aldehydes and alcohols, in particular Z9-hexadecenal and Z11-hexadecenal, as well as 1-hexadecanol and Z11-1-hexadecenol. A model of this protein indicated Lys37 as the residue that is likely to establish strong interactions with the ligands, probably a Schiff base with aldehydes and a hydrogen bond with alcohols. Indeed, when we replaced this lysine with a leucine, the mutated protein lost its affinity to both long aldehydes and alcohols, while the binding of other volatiles was unaffected. Long-chain linear alcohols are common products of molds and have been reported as aphid antifeedants. Corresponding aldehydes, instead, are major components of sex pheromones for several species of Lepidoptera. We speculate that aphids might use OBP9 to avoid mold-contaminated plants as well as competition with lepidopteran larvae.

7.
Methods Enzymol ; 642: 229-258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32828255

RESUMEN

Assessing the ligand-binding properties of OBPs and CSPs is essential for understanding their physiological function. It also provides basic information when these proteins are used as biosensing elements for instrumental measurement of odors. Although different approaches have been applied in the past to evaluate the affinity of receptors and soluble binding proteins to their ligands, using a fluorescent reporter represents the method of choice for OBPs and CSPs. It offers the advantages of working at the equilibrium, being simple, fast and inexpensive, without requiring the use of radioactive tracers. However, as an indirect method, the fluorescence competitive binding approach presents drawbacks and sometimes requires an elaborate analysis to explain unexpected results. Here, after a brief survey of the different approaches to evaluate affinity constants, we focus on the fluorescence binding assay as applied to OBPs and CSPs, discussing situations that may require closer inspection of the results.


Asunto(s)
Receptores Odorantes , Proteínas de Insectos , Ligandos , Filogenia , Receptores Odorantes/genética
8.
Methods Enzymol ; 642: 301-324, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32828258

RESUMEN

Modifying the affinity of odorant-binding proteins (OBPs) to small ligands by replacement of specific residues in the binding pocket may lead to several technological applications. Thanks to their compact and stable structures, OBPs are currently regarded as the best candidates to be used in biosensing elements for odorants and volatiles detection. The wide and rich information on the structure of these proteins both in their apo-forms and in complexes with specific ligands provides guidelines to design reliable mutants to monitor specific targets. The same engineered proteins may also find applications in the slow release of pheromones and other chemicals in the environment, as well as in the fine purification of drugs, including the resolution of racemates. Apart from such useful applications, site-directed mutagenesis represents an interesting approach to dissect the specific interactions between small chemicals and amino acid residues in the binding pocket. These studies can lead to design of better ligands, such as pheromone analogues with desired physico-chemical characteristics. In this chapter we examine the different uses of mutagenesis applied to OBPs and report a couple of protocols that have been successful in our hands.


Asunto(s)
Proteínas Portadoras , Odorantes , Proteínas de Insectos/metabolismo , Ligandos , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...