Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Syst Appl Microbiol ; 46(5): 126454, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37703769

RESUMEN

Cajanus cajan L. (guandul) is commonly cultivated in Dominican Republic where this legume is a subsistence crop. Here we identified through MALDI-TOF MS several rhizobial strains nodulating C. cajan in two Dominican locations as Bradyrhizobium yuanmingense. The phylogenetic analysis of recA and glnII housekeeping genes showed that these strains belong to a wide cluster together with the type strain of B. yuanmingense and other C. cajan nodulating strains previously isolated in Dominican Republic. The comparison of genomes from strains representative of different lineages within this cluster support the existence of several genospecies within B. yuanmingense, which is the major microsymbiont of C. cajan in Dominican Republic where it is also nodulated by Bradyrhizobium cajani and Bradyrhizobium pachyrhizi. The analysis of the symbiotic nodC gene showed that the C. cajan nodulating strains from the B. yuanmingense complex belong to two clusters with less than 90% similarity between them. The strains from these two clusters showed nodC gene similarity values lower than 90% with respect to the remaining Bradyrhizobium symbiovars and then they correspond to two new symbiovars for which we propose the names americaense and caribense. The results of the nodC gene analysis also showed that C. cajan is nodulated by the symbiovar tropici, which has been found by first time in this work within the species Bradyrhizobium pachyrhizi. These results confirmed the high promiscuity degree of C. cajan, which is also nodulated by the symbiovar cajani of Bradyrhizobium cajani in Dominican Republic.


Asunto(s)
Bradyrhizobium , Cajanus , Fabaceae , Cajanus/genética , República Dominicana , Nódulos de las Raíces de las Plantas , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Simbiosis/genética , ADN Bacteriano/genética
2.
Int J Syst Evol Microbiol ; 67(7): 2236-2241, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28671523

RESUMEN

Two slow-growing strains, AMBPC1010T and AMBPC1011, were isolated from nodules of Cajanus cajan in the Dominican Republic. 16S rRNA gene analysis placed these strains within the genus Bradyrhizobium, being phylogenetically equidistant to several species of this genus. Analysis of the recA and atpD genes showed that the strains isolated belong to a cluster containing the strains Bradyrhizobium ottawaense OO99T, 'Bradyrhizobium americanum' CMVU44 and Bradyrhizobium daqingense CCBAU 15774T, and presented similarity values lower than 96 % for both genes with respect to the strains nodulating C. cajan. DNA-DNA hybridization analysis showed averages of 36, 40 and 39 % relatedness with respect to the representative strains of Bradyrhizobium ottawaense, 'Bradyrhizobium americanum' and Bradyrhizobium daqingense, respectively. Phenotypic characteristics also differed from those of the most closely related species of the genus Bradyrhizobium. Therefore, based on the data obtained in this study, we propose to classify the strains AMBPC1010T (=LMG 29967T=CECT 9227T) and AMBPC1011 into a novel species named Bradyrhizobium cajani sp. nov.


Asunto(s)
Bradyrhizobium/clasificación , Cajanus/microbiología , Filogenia , Nódulos de las Raíces de las Plantas/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Bradyrhizobium/genética , Bradyrhizobium/aislamiento & purificación , ADN Bacteriano/genética , República Dominicana , Genes Bacterianos , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Simbiosis
3.
Syst Appl Microbiol ; 37(2): 149-56, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24239274

RESUMEN

Hispaniola Island was the first stopover in the travels of Columbus between America and Spain, and played a crucial role in the exchange of Phaseolus vulgaris seeds and their endosymbionts. The analysis of recA and atpD genes from strains nodulating this legume in coastal and inner regions of Hispaniola Island showed that they were almost identical to those of the American strains CIAT 652, Ch24-10 and CNPAF512, which were initially named as Rhizobium etli and have been recently reclassified into Rhizobium phaseoli after the analysis of their genomes. Therefore, the species R. phaseoli is more abundant in America than previously thought, and since the proposal of the American origin of R. etli was based on the analysis of several strains that are currently known to be R. phaseoli, it can be concluded that both species have an American origin coevolving with their host in its distribution centres. The analysis of the symbiovar phaseoli nodC gene alleles carried by different species isolated in American and European countries suggested a Mesoamerican origin of the α allele and an Andean origin of the γ allele, which is supported by the dominance of this latter allele in Europe where mostly Andean cultivars of common beans have been traditionally cultivated.


Asunto(s)
Biota , Phaseolus/microbiología , Filogeografía , Rhizobium phaseoli/clasificación , Rhizobium phaseoli/aislamiento & purificación , Rhizobium/clasificación , Nódulos de las Raíces de las Plantas/microbiología , América Central , Datos de Secuencia Molecular , Rhizobium/genética , Rhizobium phaseoli/genética , Análisis de Secuencia de ADN , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...