Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Phys Chem Chem Phys ; 24(34): 20239-20248, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35996966

RESUMEN

The excitation of low-energy electron-hole pairs is one of the most relevant processes in the gas-surface interaction. An efficient tool to account for these excitations in simulations of atomic and molecular dynamics at surfaces is the so-called local density friction approximation (LDFA). The LDFA is based on a strong approximation that simplifies the dynamics of the electronic system: a local friction coefficient is defined using the value of the electronic density for the unperturbed system at each point of the dynamics. In this work, we apply real-time time-dependent density functional theory to the problem of the electronic friction of a negative point charge colliding with spherical jellium metal clusters. Our non-adiabatic, parameter-free results provide a benchmark for the widely used LDFA approximation and allow the discussion of various processes relevant to the electronic response of the system in the presence of the projectile.

3.
J Phys Chem A ; 125(12): 2588-2600, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33734696

RESUMEN

A high dimensional and accurate atomistic neural network potential energy surface (ANN-PES) that describes the interaction between one O2 molecule and a highly oriented pyrolytic graphite (HOPG) surface has been constructed using the open-source package (aenet). The validation of the PES is performed by paying attention to static characteristics as well as by testing its performance in reproducing previous ab initio molecular dynamics simulation results. Subsequently, the ANN-PES is used to perform quasi-classical molecular dynamics calculations of the alignment-dependent scattering of O2 from HOPG. The results are obtained for 200 meV O2 molecules with different initial alignments impinging with a polar incidence angle with respect to the surface normal of 22.5° on a thermalized (110 and 300 K) graphite surface. The choice of these initial conditions in our simulations is made to perform comparisons to recent experimental results on this system. Our results show that the scattering of O2 from the HOPG surface is a rather direct process, that the angular distributions are alignment dependent, and that the final translational energy of end-on molecules is around 20% lower than that of side-on molecules. Upon collision with the surface, the molecules that are initially aligned perpendicular to the surface become highly rotationally excited, whereas a very small change in the rotational state of the scattered molecules is observed for the initial parallel alignments. The latter confirms the energy transfer dependence on the stereodynamics for the present system. The results of our simulations are in overall agreement with the experimental observations regarding the shape of the angular distributions and the alignment dependence of the in-plane reflected molecules.

4.
Phys Chem Chem Phys ; 22(39): 22805-22814, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33021270

RESUMEN

The classical trajectory method in a quantum spirit assigns statistical weights to classical paths on the basis of two semiclassical corrections: Gaussian binning and the adiabaticity correction. This approach was recently applied to the heterogeneous gas-surface reaction between H2 in its internal ground state and Pd(111) surface e.g. [A. Rodríguez-Fernández et al., J. Phys. Chem. Lett., 2019, 10, 7629]. Its predictions of the sticking and state-resolved reflection probabilities were found to be in surprisingly good agreement with those of exact quantum time-dependent calculations where standard quasi-classical trajectory calculations failed. We show in this work that the quality of the previous calculations is maintained or even improved when H2 is rotationally excited.

5.
J Chem Phys ; 144(24): 244708, 2016 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-27369534

RESUMEN

Accurately modeling surface temperature and surface motion effects is necessary to study molecule-surface reactions in which the energy dissipation to surface phonons can largely affect the observables of interest. We present here a critical comparison of two methods that allow to model such effects, namely, the ab initio molecular dynamics (AIMD) method and the generalized Langevin oscillator (GLO) model, using the dissociation of N2 on W(110) as a benchmark. AIMD is highly accurate as the surface atoms are explicitly part of the dynamics, but this advantage comes with a large computational cost. The GLO model is much more computationally convenient, but accounts for lattice motion effects in a very approximate way. Results show that, despite its simplicity, the GLO model is able to capture the physics of the system to a large extent, returning dissociation probabilities which are in better agreement with AIMD than static-surface results. Furthermore, the GLO model and the AIMD method predict very similar energy transfer to the lattice degrees of freedom in the non-reactive events, and similar dissociation dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...