Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 223: 116188, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580166

RESUMEN

Recently published cryo-EM structures of human organic cation transporters of the SLC22 family revealed seven, sequentially arranged glutamic and aspartic acid residues, which may be relevant for interactions with positively charged substrates. We analyzed the functional consequences of removing those negative charges by creating D155N, E232Q, D382N, E390Q, E451Q, E459Q, and D478N mutants of OCT3. E232Q, E459Q, and D478N resulted in a lack of localization in the outer cell membrane and no relevant uptake activity. However, D155N and E451Q showed a substrate-specific loss of transport activity, whereas E390Q had no remaining activity despite correct membrane localization. In contrast, D382N showed almost wild-type-like uptake. D155 is located at the entrance to the substrate binding pocket and could, therefore be involved in guiding cationic substrates towards the inside of the binding pocket. For E390, we confirm its critical function for transporter function as it was recently shown for the corresponding position in OCT1. Interestingly, E451 seems to be located at the bottom of the binding pocket in the outward-open confirmation of the transporter. Substrate-specific loss of transport activity of the E451Q variant suggests an essential role in the transport cycle of specific substances as part of an opportunistic binding site. In general, our study highlights the impact of the cryo-EM structures in guiding mutagenesis studies to understand the molecular level of transporter-ligand interactions, and it also confirms the importance of testing multiple substrates in mutagenesis studies of polyspecific OCTs.


Asunto(s)
Aminoácidos , Proteínas de Transporte de Catión Orgánico , Humanos , Cationes/metabolismo , Mutagénesis , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 1 de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico
2.
Biomed Pharmacother ; 161: 114454, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36871537

RESUMEN

The organic cation transporter 1 (OCT1) mediates the cell uptake and cytochrome P450 2D6 (CYP2D6) the metabolism of many cationic substrates. Activities of OCT1 and CYP2D6 are affected by enormous genetic variation and frequent drug-drug interactions. Single or combined deficiency of OCT1 and CYP2D6 might result in dramatic differences in systemic exposure, adverse drug reactions, and efficacy. Thus, one should know what drugs are affected to what extent by OCT1, CYP2D6 or both. Here, we compiled all data on CYP2D6 and OCT1 drug substrates. Among 246 CYP2D6 substrates and 132 OCT1 substrates, we identified 31 shared substrates. In OCT1 and CYP2D6 single and double-transfected cells, we studied which, OCT1 or CYP2D6, is more critical for a given drug and whether there are additive, antagonistic or synergistic effects. In general, OCT1 substrates were more hydrophilic than CYP2D6 substrates and smaller in size. Inhibition studies showed unexpectedly pronounced inhibition of substrate depletion by shared OCT1/CYP2D6 inhibitors. In conclusion, there is a distinct overlap in the OCT1/CYP2D6 substrate and inhibitor spectra, so in vivo pharmacokinetics and -dynamics of shared substrates may be significantly affected by frequent OCT1- and CYP2D6-polymorphisms and by comedication with shared inhibitors.


Asunto(s)
Citocromo P-450 CYP2D6 , Transportador 1 de Catión Orgánico , Citocromo P-450 CYP2D6/metabolismo , Transportador 1 de Catión Orgánico/genética , Transportador 1 de Catión Orgánico/metabolismo
3.
J Med Chem ; 65(18): 12403-12416, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36067397

RESUMEN

Organic cation transporters (OCTs) 1, 2, and 3 facilitate cellular uptake of structurally diverse endogenous and exogenous substances. However, their substrate and inhibitor specificity are not fully understood. We performed a broad in vitro screening for OCT3 substrates and inhibitors, allowing us to compare the substrate spectra and to study the relationship between transport and inhibition of transport. Generally, substrates were smaller and more hydrophilic than OCT3 inhibitors. The best model-based predictor of transport was the positive charge, while the best predictor of inhibition was the aromatic ring count. OCT3 inhibition was well correlated between different model substrates. Substrates of OCT3 were mainly weak inhibitors, and the best inhibitors were not substrates. As tested with 264 substances, OCT3 transport had significantly more overlap with OCT2 than OCT1. Our data further substantiate that specificity of OCT transport varies with minor substitutions rather than with the general scaffolds of substrates.


Asunto(s)
Proteínas de Transporte de Catión Orgánico , Transportador 1 de Catión Orgánico , Transporte Biológico , Cationes , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 1 de Catión Orgánico/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo
4.
Pharmacol Ther ; 239: 108283, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36162727

RESUMEN

About 30% of all small molecular drugs are organic cations (OCs). If these are more or less hydrophilic, they require membrane transporters to pass through biological membranes. Here, the proton-organic cation (H+ OC) antiporter may play a physiologically most relevant role, particularly concerning passage through the blood-brain barrier. Membrane transport of about 70 OCs is significantly enhanced by this H+ OC antiporter. Surprisingly still today the gene coding for this antiporter was not yet identified. However, the H+ OC antiporter is characterized by concentration- and pH-dependent uptake, antiport with another OC, and susceptibility to inhibition by specific inhibitors. Moreover, in the studied tissues and cell types, transport is not mediated by already well-known organic cation transporters. The review explains the typically used assays to identify potential substrates of the H+ OC antiporter. Thus far, the gene encoding for this transporter has not yet been identified, but a better understanding of this protein may be most relevant because it may affect the pharmacokinetics of up to 10% of all low molecular substances. This review summarizes the known functional characteristics of the H+ OC antiporter, its cell and tissue expression, and its substrate spectrum. Summarizing the features of the substrates of the H+ OC antiporter may even suggest that for OCs, good penetration through the blood-brain barrier is almost synonymous with being a substrate of the H+ OC antiporter. In clinical studies, pharmacokinetics of typical substrates of the antiporter showed outstanding between-subject variability.


Asunto(s)
Antiportadores , Protones , Humanos , Antiportadores/genética , Antiportadores/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Barrera Hematoencefálica/metabolismo , Transporte Biológico , Cationes/metabolismo
5.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955563

RESUMEN

Many organic cations (OCs) may be transported through membranes by a genetically still uncharacterized proton-organic cation (H + OC) antiporter. Here, we characterized an extended substrate spectrum of this antiporter. We studied the uptake of 72 drugs in hCMEC/D3 cells as a model of the human blood-brain barrier. All 72 drugs were tested with exchange transport assays and the transport of 26 of the drugs was studied in more detail concerning concentration-dependent uptake and susceptibility to specific inhibitors. According to exchange transport assays, 37 (51%) drugs were good substrates of the H + OC antiporter. From 26 drugs characterized in more detail, 23 were consistently identified as substrates of the H + OC antiporter in six different assays and transport kinetic constants could be identified with intrinsic clearances between 0.2 (ephedrine) and 201 (imipramine) mL × minute-1 × g protein-1. Excellent substrates of the H + OC antiporter were no substrates of organic cation transporter OCT1 and vice versa. Good substrates of the H + OC antiporter were more hydrophobic and had a lower topological polar surface area than non-substrates or OCT1 substrates. These data and further research on the H + OC antiporter may result in a better understanding of pharmacokinetics, drug-drug interactions and variations in pharmacokinetics.


Asunto(s)
Antiportadores , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Transportador 1 de Catión Orgánico , Antiportadores/genética , Antiportadores/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Cationes , Humanos , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 1 de Catión Orgánico/metabolismo , Protones
6.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216120

RESUMEN

The organic cation transporter 1 (OCT1, SLC22A1) transports a large number of structurally diverse endogenous and exogenous substrates. There are numerous known competitive and non-competitive inhibitors of OCT1, but there are no studies systematically analyzing the relationship between transport, stimulation, and inhibition. Here, we tested in vitro OCT1 inhibition by OCT1 substrates and transport of OCT1 inhibitors under uniform analytical conditions. Beyond inhibition testing with two model substrates, we tested nine additional OCT1 substrates for their mutual inhibition. Inhibition of ASP+ uptake by most OCT1 substrates was weak. The model substrate sumatriptan, with its moderately stronger inhibitability, was used to confirm this. Interestingly, OCT1 substrates exhibiting stronger OCT1 inhibition were mainly biaromatic ß-agonistic drugs, such as dobutamine, fenoterol, ractopamine and ritodrine. Biaromatic organic cations were both, strong inhibitors and good substrates, but many OCT1 substrates showed little pairwise inhibition. Surprisingly, sumatriptan did significantly enhance dobutamine uptake. This effect was concentration dependent and additional experiments indicated that efflux inhibition may be one of the underlying mechanisms. Our data suggests, that OCT1 substrates are mainly weak OCT1 inhibitors and among those inhibiting well, noncompetitive inhibition could be responsible. Weak competitive inhibition confirms that OCT1 inhibition screenings poorly predict OCT1 substrates. Additionally, we showed that the OCT1 substrate sumatriptan can enhance uptake of some other OCT1 substrates. OCT1 transport stimulation was already observed earlier but is still poorly understood. Low OCT1 uptake inhibition and strong OCT1 efflux inhibition could be mechanisms exploitable for enhancing transport.


Asunto(s)
Transporte Biológico/fisiología , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Línea Celular , Células HEK293 , Humanos
7.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34884618

RESUMEN

Human monoamine transporters (MATs) are cation transporters critically involved in neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predominantly known for their role in hepatic and renal drug elimination, are also expressed in the central nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin transporters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass. Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine had the most balanced uptake across all six transporters. Matched molecular pair analyses comparing MAT and OCT uptake using the same methodology could provide a better understanding of structural determinants for high cell uptake by MATs or OCTs. The data may result in a better understanding of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in the development of more specific radiotracers for MATs.


Asunto(s)
Neurotransmisores/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Transportador 2 de Cátion Orgánico/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Especificidad por Sustrato
8.
J Am Heart Assoc ; 10(22): e022299, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34726072

RESUMEN

Background Pain is a major issue in our aging society. Dipyrone (metamizole) is one of the most frequently used analgesics. Additionally, it has been shown to impair pharmacodynamic response to aspirin as measured by platelet function tests. However, it is not known how this laboratory effect translates to clinical outcome. Methods and Results We conducted a nationwide analysis of a health insurance database in Germany comprising 9.2 million patients. All patients with a cardiovascular event in 2014 and subsequent secondary prevention with aspirin were followed up for 36 months. Inverse probability of treatment weighting analysis was conducted to investigate the rate of mortality, myocardial infarction, and stroke/transient ischemic attack between patients on aspirin-dipyrone co-medication compared with aspirin-alone medication. Permanent aspirin-alone medication was given to 26,200 patients, and 5946 patients received aspirin-dipyrone co-medication. In the inverse probability of treatment weighted sample, excess mortality in aspirin-dipyrone co-medicated patients was observed (15.6% in aspirin-only group versus 24.4% in the co-medicated group, hazard ratio [HR], 1.66 [95% CI, 1.56-1.76], P<0.0001). Myocardial infarction and stroke/transient ischemic attack were increased as well (myocardial infarction: 1370 [5.2%] versus 355 [5.9%] in aspirin-only and co-medicated groups, respectively; HR, 1.18 [95% CI, 1.05-1.32]; P=0.0066, relative risk [RR], 1.14; number needed to harm, 140. Stroke/transient ischemic attack, 1901 [7.3%] versus 506 [8.5%] in aspirin-only and co-medicated groups, respectively; HR, 1.22 [95% CI, 1.11-1.35]; P<0.0001, RR, 1.17, number needed to harm, 82). Conclusions In this observational, nationwide analysis, aspirin and dipyrone co-medication was associated with excess mortality. This was in part driven by ischemic events (myocardial infarction and stroke), which occurred more frequently in co-medicated patients as well. Hence, dipyrone should be used with caution in aspirin-treated patients for secondary prevention.


Asunto(s)
Aspirina/efectos adversos , Enfermedades Cardiovasculares , Dipirona/efectos adversos , Cardiotoxinas , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Humanos , Ataque Isquémico Transitorio/diagnóstico , Ataque Isquémico Transitorio/tratamiento farmacológico , Ataque Isquémico Transitorio/epidemiología , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/epidemiología , Inhibidores de Agregación Plaquetaria/efectos adversos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/prevención & control
9.
J Med Chem ; 64(5): 2762-2776, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33606526

RESUMEN

OCT1 is the most highly expressed cation transporter in the liver and affects pharmacokinetics and pharmacodynamics. Newly marketed drugs have previously been screened as potential OCT1 substrates and verified by virtual docking. Here, we used machine learning with transport experiment data to predict OCT1 substrates based on classic molecular descriptors, pharmacophore features, and extended-connectivity fingerprints and confirmed them by in vitro uptake experiments. We virtually screened a database of more than 1000 substances. Nineteen predicted substances were chosen for in vitro testing. Sixteen of the 19 newly tested substances (85%) were confirmed as, mostly strong, substrates, including edrophonium, fenpiverinium, ritodrine, and ractopamine. Even without a crystal structure of OCT1, machine learning algorithms predict substrates accurately and may contribute not only to a more focused screening in drug development but also to a better molecular understanding of OCT1 in general.


Asunto(s)
Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Compuestos Orgánicos/metabolismo , Bases de Datos de Compuestos Químicos , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Aprendizaje Automático , Compuestos Orgánicos/química
10.
Pharmacol Ther ; 217: 107629, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682785

RESUMEN

Drug-drug interactions (DDI) and genomic variation (PG) can lead to dangerously high blood and tissue concentrations with some drugs but may be negligible with other drugs. Using a quantitative metaanalysis, we analyzed on the example of CYP2D6 and CYP2C19 substrates, how well the effects of DDI and PG can be predicted by in vitro methods. In addition, we analyzed the quantitative effect of prototypic inhibitors of the two enzymes in relation to their genetic deficiency. More than 600 published studies were screened which compared either human pharmacokinetics with and without comedication, or which compared human pharmacokinetics of deficient with extensive metabolizers, or which assessed metabolism by in vitro approaches. With human liver microsomes, the in vitro to in vivo agreement of fractional clearances was reasonably high if loss of substrate was quantified in the in vitro assays performed with and without enzyme specific inhibitors. Also a generally very high correlation between the clinical pharmacokinetic effects of inherited deficiency and inhibition by drug-drug interactions could be demonstrated. Most cases of poor correlation were explained by the lack of CYP2D6 versus CYP2C19 specificity of fluoxetine or by a poor knowledge of the quantitative contribution of the metabolic pathways if metabolite formation was quantified in the in vitro assays. The good correspondence of the in vitro data with clinical DDI and clinical PG studies may be a good basis for future application of these methods in drug development and drug therapy.


Asunto(s)
Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Interacciones Farmacológicas/genética , Variantes Farmacogenómicas/genética , Farmacocinética , Área Bajo la Curva , Fluoxetina/farmacocinética , Genotipo , Humanos , Técnicas In Vitro , Modelos Biológicos , Especificidad por Sustrato
11.
Clin Pharmacol Ther ; 105(3): 625-640, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29498032

RESUMEN

Older persons may particularly benefit from pharmacogenetic diagnostics, but there is little clinical evidence on that question. We quantitatively analyzed the effects of age and genotype in drugs with consensus on a therapeutically relevant impact of a genotype. Assuming additive effects of age and genotype, drugs may be classified in groups with different priorities to consider either age, or genotype, or both, in therapy. Particularly interesting were those studies specifically analyzing the age-by-genotype interaction.


Asunto(s)
Envejecimiento/metabolismo , Variación Genética/fisiología , Genómica/métodos , Genotipo , Preparaciones Farmacéuticas/metabolismo , Farmacogenética/métodos , Anciano , Anciano de 80 o más Años , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo , Variación Genética/efectos de los fármacos , Humanos , Pruebas de Farmacogenómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA