Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Exp Orthop ; 10(1): 13, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757624

RESUMEN

PURPOSE: The purpose of this in-vitro study was to examine the kinematics of an artificial, free-floating medial meniscus replacement device under dynamic loading situations and different knee joint states. METHODS: A dynamic knee simulator was used to perform dynamic loading exercises on three neutrally aligned and three 10° valgus aligned (simulating a medial openwedge high tibial osteotomy - MOWHTO) left human cadaveric knee joints. The knee joints were tested in three states (intact, conventional notchplasty, extended notchplasty) while 11 randomised exercises were simulated (jump landing, squatting, tibial rotation and axial ground impacts at 10°, 30° and 60° knee joint flexion) to investigate the knee joint and implant kinematics by means of rigidly attached reflective marker sets and an according motion analysis. RESULTS: The maximum implant translation relative to the tibial plateau was < 13 mm and the maximum implant rotation was < 19° for all exercises. Both, the notchplasties and the valgus knee alignment did not affect the device kinematics. CONCLUSIONS: The results of the present in-vitro study showed that the non-anchored free-floating device remains within the medial knee joint gap under challenging dynamic loading situations without indicating any luxation tendencies. This also provides initial benchtop evidence that the device offers suitable stability and kinematic behaviour to be considered a potential alternative to meniscus allograft transplantation in combination with an MOWHTO, potentially expanding the patient collective in the future.

2.
Knee Surg Sports Traumatol Arthrosc ; 31(2): 390-398, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32712685

RESUMEN

PURPOSE: Anterolateral rotatory instability (ALRI) may result from isolated ruptures of the anterior cruciate ligament (ACL) or combined lesions with the anterolateral ligament (ALL). Biomechanical studies have demonstrated that the ALL contributes to the overall rotational stability of the knee. The purpose of this study was to investigate the biomechanical function of anatomic ALL reconstruction (ALLrec) in the setting of a combined ACL and ALL injury and reconstruction. The hypothesis was that combined ACL reconstruction (ACLrec) and ALLrec (ACL/ALLrec) significantly reduces internal rotation and shows load sharing between both reconstructions compared with isolated ACLrec. METHODS: Eight fresh-frozen cadaveric knees were evaluated using a six degrees of freedom knee simulator. Continuous passive motion and external loads were tested. Kinematic differences between ACLrec and combined ACL/ALLrec were compared. Additionally, ACL graft tension and ALL graft strain were measured continuously throughout the testing protocol. RESULTS: Combined anatomic ACL/ALLrec significantly improved the internal rotatory stability compared with isolated ACLrec at 30°-90° under an internal rotation moment. During a static pivot-shift test, additional ALLrec showed no significant reduction of ap-translation. ALLrec resulted in an increase in ACL graft tension during continuous passive motion and with additional internal rotation moment. CONCLUSION: In the case of a combined ACL and ALL deficiency, concurrent ACLrec and ALLrec significantly improved the rotatory stability of the knee compared with solely reconstructing the ACL at flexion angles ≥ 30°. Nevertheless, additional ALLrec with fixation at 60° and with low tension could not restore extension-near rotatory stability. For that reason, ALLrec with fixation at 60° flexion cannot be recommended in clinical application.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Inestabilidad de la Articulación , Humanos , Lesiones del Ligamento Cruzado Anterior/cirugía , Tibia/cirugía , Inestabilidad de la Articulación/cirugía , Cadáver , Ligamento Cruzado Anterior/cirugía , Articulación de la Rodilla/cirugía , Rango del Movimiento Articular , Fenómenos Biomecánicos
3.
Front Bioeng Biotechnol ; 10: 837554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372324

RESUMEN

The aim of this biomechanical in vitro study was to answer the question whether the meniscus acts as a shock absorber in the knee joint or not. The soft tissue of fourteen porcine knee joints was removed, leaving the capsuloligamentous structures intact. The joints were mounted in 45° neutral knee flexion in a previously validated droptower setup. Six joints were exposed to an impact load of 3.54 J, and the resultant loss factor (η) was calculated. Then, the setup was modified to allow sinusoidal loading under dynamic mechanical analysis (DMA) conditions. The remaining eight knee joints were exposed to 10 frequencies ranging from 0.1 to 5 Hz at a static load of 1210 N and a superimposed sinusoidal load of 910 N (2.12 times body weight). Forces (F) and deformation (l) were continuously recorded, and the loss factor (tan δ) was calculated. For both experiments, four meniscus states (intact, medial posterior root avulsion, medial meniscectomy, and total lateral and medial meniscectomy) were investigated. During the droptower experiments, the intact state indicated a loss factor of η = 0.1. Except for the root avulsion state (-15%, p = 0.12), the loss factor decreased (p < 0.046) up to 68% for the total meniscectomy state (p = 0.028) when compared to the intact state. Sinusoidal DMA testing revealed that knees with an intact meniscus had the highest loss factors, ranging from 0.10 to 0.15. Any surgical manipulation lowered the damping ability: Medial meniscectomy resulted in a reduction of 24%, while the resection of both menisci lowered tan δ by 18% compared to the intact state. This biomechanical in vitro study indicates that the shock-absorbing ability of a knee joint is lower when meniscal tissue is resected. In other words, the meniscus contributes to the shock absorption of the knee joint not only during impact loads, but also during sinusoidal loads. The findings may have an impact on the rehabilitation of young, meniscectomized patients who want to return to sports. Consequently, such patients are exposed to critical loads on the articular cartilage, especially when performing sports with recurring impact loads transmitted through the knee joint surfaces.

4.
Clin Orthop Relat Res ; 480(3): 523-535, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494983

RESUMEN

BACKGROUND: Knotted and knotless single-anchor reconstruction techniques are frequently performed to reconstruct full-thickness tears of the upper portion of subscapularis tendon. However, it is unclear whether one technique is superior to the other. QUESTIONS/PURPOSES: (1) When comparing knotless and knotted single-anchor reconstruction techniques in full-thickness tears of the upper subscapularis tendon, is there a difference in stiffness under cyclic load? (2) Are there differences in cyclic gapping between knotless and knotted reconstructions? (3) Are there differences in the maximal stiffness, yield load, and ultimate load to failure? (4) What are the modes of failure of knotless and knotted reconstruction techniques? METHODS: Eight matched pairs of human cadaveric shoulders were dissected, and a full-thickness tear of the subscapularis tendon (Grade 3 according to the Fox and Romeo classification) was created. The cadavers all were male specimens, with a median (range) age of 69 years (61 to 75). Before biomechanical evaluation, the specimens were randomized into two equal reconstruction groups: knotless single anchor and knotted single anchor. All surgical procedures were performed by a single orthopaedic surgeon who subspecializes in sports orthopedics and shoulder surgery. With a customized set up that was integrated in a dynamic material testing machine, the humeri were consecutively loaded from 10 N to 60 N, from 10 N to 100 N, and from 10 N to 180 N for 50 cycles. Furthermore, the gapping behavior of the tear was analyzed using a video tracking system. Finally, the stiffness, gapping, maximal stiffness, yield loads, and maximum failure loads of both reconstruction groups were statistically analyzed. Failure was defined as retearing of the reconstructed gap threshold due to rupture of the tendon and/or failure of the knots or anchors. After biomechanical testing, bone quality was measured at the footprint of the subscapularis using microCT in all specimens. Bone quality was equal between both groups. To detect a minimum 0.15-mm difference in gap formation between the two repair techniques (with a 5% level of significance; α = 0.05), eight matched pairs (n = 16 in total) were calculated as necessary to achieve a power of at least 90%. RESULTS: The first study question can be answered as follows: for stiffness under cyclic load, there were no differences with the numbers available between the knotted and knotless groups at load stages of 10 N to 60 N (32.7 ± 3.5 N/mm versus 34.2 ± 5.6 N/mm, mean difference 1.5 N/mm [95% CI -6.43 to 3.33]; p = 0.55), 10 N to 100 N (45.0 ± 4.8 N/mm versus 45.2 ± 6.0 N/mm, mean difference 0.2 N/mm [95% CI -5.74 to 6.04]; p = 0.95), and 10 N to 180 N (58.2 ± 10.6 N/mm versus 55.2 ± 4.7 N/mm, mean difference 3 N/mm [95% CI -5.84 to 11.79]; p = 0.48). In relation to the second research question, the following results emerged: For cyclic gapping, there were no differences between the knotted and knotless groups at any load levels. The present study was able to show the following with regard to the third research question: Between knotted and knotless repairs, there were no differences in maximal load stiffness (45.3 ± 8.6 N/mm versus 43.5 ± 10.2 N/mm, mean difference 1.8 [95% CI -11.78 to 8.23]; p = 0.71), yield load (425.1 ± 251.4 N versus 379.0 ± 169.4 N, mean difference 46.1 [95% CI -276.02 to 183.72]; p = 0.67), and failure load (521.1 ± 266.2 N versus 475.8 ± 183.3 N, mean difference 45.3 [95% CI -290.42 to 199.79]; p = 0.69). Regarding the fourth question concerning the failure modes, in the knotted repairs, the anchor tore from the bone in 2 of 8, the suture tore from the tendon in 6 of 8, and no suture slipped from the eyelet; in the knotless repairs, the anchor tore from the bone in 2 of 8, the suture tore from the tendon in 3 of 8, and the threads slipped from the eyelet in 3 of 8. CONCLUSION: With the numbers available, we found no differences between single-anchor knotless and knotted reconstruction techniques used to repair full-thickness tears of the upper portion of subscapularis tendon. CLINICAL RELEVANCE: The reconstruction techniques we analyzed showed no differences in terms of their primary stability and biomechanical properties at the time of initial repair and with the numbers available. In view of these experimental results, it would be useful to conduct a clinical study in the future to verify the translationality of the experimental data of the present study.


Asunto(s)
Procedimientos de Cirugía Plástica/métodos , Lesiones del Manguito de los Rotadores/cirugía , Anclas para Sutura , Técnicas de Sutura , Anciano , Fenómenos Biomecánicos , Cadáver , Humanos , Masculino , Persona de Mediana Edad
5.
Front Bioeng Biotechnol ; 9: 765596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926419

RESUMEN

Purpose: Menisci transfer axial loads, while increasing the load-bearing tibiofemoral contact area and decreasing tibiofemoral contact pressure (CP). Numerous clinical and experimental studies agree that an increased CP is one predominant indicator for post-traumatic osteoarthritis (PTOA) of the knee joint. However, due to the immense variability in experimental test setups and wide range of treatment possibilities in meniscus surgery, it is difficult to objectively assess their impact on the CP determination, which is clearly crucial for knee joint health. Therefore, the aim of this systematic review is to investigate the influence of different meniscal injuries and their associated surgical treatments on the CP. Secondly, the influence of different test setups on CP measurements is assessed. On the basis of these results, we established the basis for recommendations for future investigations with the aim to determine CPs under different meniscal states. Methods: This review was conducted in accordance with the PRISMA guidelines. Studies were identified through a systematic literature search in Cochrane, PubMed and Web of Science databases. Literature was searched through pre-defined keywords and medical subject headings. Results: This review indicates a significant increase of up to 235% in peak CP when comparing healthy joints and intact menisci with impaired knee joints, injured or resected menisci. In addition, different test setups were indicated to have major influences on CP: The variety of test setups ranged from standard material testing machines, including customized setups via horizontal and vertical knee joint simulators, through to robotic systems. Differences in applied axial knee joint loads ranged from 0 N up to 2,700 N and resulted unsurprisingly in significantly different peak CPs of between 0.1 and 12.06 MPa. Conclusion: It was shown that untreated traumatic meniscal tears result in an increased CP. Surgical repair intervention were able to restore the CP comparable to the healthy, native condition. Test setup differences and particularly axial joint loading variability also led to major CP differences. In conclusion, when focusing on CP measurements in the knee joint, transparent and traceable in vitro testing conditions are essential to allow researchers to make a direct comparison between future biomechanical investigations.

6.
Front Bioeng Biotechnol ; 9: 779946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957074

RESUMEN

While it is generally accepted that traumatic meniscus pathologies lead to degenerative articular cartilage changes in the mid-to long-term and consecutively to post-traumatic osteoarthritis (PTOA), very little is known about how such injuries initiate tribological changes within the knee and their possible impact on PTOA acceleration. Therefore, the aim of this study was to investigate the influence of three different medial meniscus states (intact, posterior root tear, total meniscectomy) on the initial whole knee joint friction. Six ovine knee joints were tested in a passive pendulum friction testing device under an axial load of 250 N and an initial deflection of 12°, representing swing phase conditions, and under an axial load of 1000 N and an initial deflection of 5°, simulating stance phase conditions. To additionally consider the influence of the time-dependent viscoelastic nature of the knee joint soft tissues on whole joint friction, the tests were performed twice, directly following load application and after 20 min creep loading of either 250 N or 1000 N axial load. On the basis of a three-dimensional joint kinematic analysis, the energy loss during the passive joint motion was analyzed, which allowed considerations on frictional and damping processes within the joint. The so-called "whole knee joint" friction was evaluated using the boundary friction model from Stanton and a viscous friction model from Crisco et al., both analyzing the passive joint flexion-extension motion in the sagittal plane. Significantly lower friction coefficients were observed in the simulated swing phase after meniscectomy (p < 0.05) compared to the intact state. No initial whole joint friction differences between the three meniscus states (p > 0.05) were found under stance phase conditions. Soft tissue creeping significantly increased all the determined friction coefficients (p < 0.05) after resting under load for 20 min. The exponential decay function of the viscous friction model provided a better fit (R 2∼0.99) to the decaying flexion-extension data than the linear decay function of the boundary friction model (R 2∼0.60). In conclusion, this tribological in vitro study on ovine knee joints indicated that neither a simulated posterior medial meniscus root tear nor the removal of the medial meniscus resulted in an initially increased whole joint friction.

7.
J Exp Orthop ; 8(1): 74, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34491456

RESUMEN

PURPOSE: The most common femoral short stems available on the market can, in principle, be divided with regard to their anchoring concepts into a calcar loading and a shortened tapered design. The purpose of this study was to compare the primary stability and stress-shielding of two short stems, which correspond to these two different anchoring concepts. METHODS: Using seven paired fresh frozen human cadaver femurs, primary axial and rotational stabilities under dynamic load (100-1600 N) were evaluated by miniature displacement transducers after 100,000 load cycles. Changes in cortical strains were measured before and after implantation of both stem types to detect implant-specific load transmission and possible stress-shielding effects. RESULTS: Reversible and irreversible micromotions under dynamic load displayed no significant differences between the two implants. Implantation of either stem types resulted in a reduction of cortical strains in the proximal femur, which was less pronounced for the calcar loading implant. CONCLUSIONS: Both short stems displayed comparable micromotions far below the critical threshold above which osseointegration may disturbed. Neither short stem could avoid proximal stress-shielding. This effect was less pronounced for the calcar loading short stem, which corresponds to a more physiological load transmission.

8.
Front Bioeng Biotechnol ; 9: 659989, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026741

RESUMEN

An exact understanding of the interplay between the articulating tissues of the knee joint in relation to the osteoarthritis (OA)-related degeneration process is of considerable interest. Therefore, the aim of the present study was to characterize the biomechanical properties of mildly and severely degenerated human knee joints, including their menisci and tibial and femoral articular cartilage (AC) surfaces. A spatial biomechanical mapping of the articulating knee joint surfaces of 12 mildly and 12 severely degenerated human cadaveric knee joints was assessed using a multiaxial mechanical testing machine. To do so, indentation stress relaxation tests were combined with thickness and water content measurements at the lateral and medial menisci and the AC of the tibial plateau and femoral condyles to calculate the instantaneous modulus (IM), relaxation modulus, relaxation percentage, maximum applied force during the indentation, and the water content. With progressing joint degeneration, we found an increase in the lateral and the medial meniscal instantaneous moduli (p < 0.02), relaxation moduli (p < 0.01), and maximum applied forces (p < 0.01), while for the underlying tibial AC, the IM (p = 0.01) and maximum applied force (p < 0.01) decreased only at the medial compartment. Degeneration had no influence on the relaxation percentage of the soft tissues. While the water content of the menisci did not change with progressing degeneration, the severely degenerated tibial AC contained more water (p < 0.04) compared to the mildly degenerated tibial cartilage. The results of this study indicate that degeneration-related (bio-)mechanical changes seem likely to be first detectable in the menisci before the articular knee joint cartilage is affected. Should these findings be further reinforced by structural and imaging analyses, the treatment and diagnostic paradigms of OA might be modified, focusing on the early detection of meniscal degeneration and its respective treatment, with the final aim to delay osteoarthritis onset.

9.
Arthrosc Sports Med Rehabil ; 3(2): e555-e563, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34027469

RESUMEN

PURPOSE: To investigate neuromuscular electromyographic response of the of the upper and lower leg muscles after the application of an intraoperative, isolated mechanical stimulus of the capsuloligamentous structures, including the anterior (ACL) and posterior cruciate ligaments (PCL), lateral (LM) and medial menisci (MM), plica mediopatellaris (PM), and Hoffa's fat pat (HFP). METHODS: The electromyographic response of the upper and lower leg muscles (M. rectus femoris; M. vastus medialis; M. semitendinosus; M. biceps femoris; M. gastrocnemius lateralis) of 15 male patients were measured after an isolated mechanical stimulus of the capsuloligamentous structures during an arthroscopic intervention using a customized intraoperative setup. Target parameters were the short (SLR; <30 milliseconds) and medium latency responses (MLR; >30 milliseconds) after the mechanically-induced trigger. RESULTS: The ACL, PCL, LM, and MM displayed high interindividual reproducibility of >76%. The MM was the only structure indicating both an SLR and MLR for all muscles. Although signals could be detected, there was no reproducibility in electromyographic signal activation for the HFP. The most rapid MLR was observed for the PM (quadriceps: 37 milliseconds). CONCLUSIONS: Each stimulated structure displayed an individual MLR response, which allowed us to create neuromapping combining the anatomical and quantitative representations of the individual muscular activation patterns after isolated mechanical stimulation of the capsuloligamentous knee joint structures, corroborating our hypothesis. LEVEL OF EVIDENCE: Diagnostic - Level II.

10.
Arch Orthop Trauma Surg ; 141(10): 1797-1806, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33755800

RESUMEN

PURPOSE: In total hip arthroplasty, uncemented short stems have been used more and more frequently in recent years. Especially for short and curved femoral implants, bone-preserving and soft tissue-sparing properties are postulated. However, indication is limited to sufficient bone quality. At present, there are no curved short stems available which are based on cemented fixation. METHODS: In this in vitro study, primary stability and maximum fracture load of a newly developed cemented short-stem implant was evaluated in comparison to an already well-established cemented conventional straight stem using six pairs of human cadaver femurs with minor bone quality. Primary stability, including reversible micromotion and irreversible migration, was assessed in a dynamic material-testing machine. Furthermore, a subsequent load-to-failure test revealed the periprosthetic fracture characteristics. RESULTS: Reversible and irreversible micromotions showed no statistical difference between the two investigated stems. All short stems fractured under maximum load according to Vancouver type B3, whereas 4 out of 6 conventional stems suffered a periprosthetic fracture according to Vancouver type C. Mean fracture load of the short stems was 3062 N versus 3160 N for the conventional stems (p = 0.84). CONCLUSION: Primary stability of the cemented short stem was not negatively influenced compared to the cemented conventional stem and no significant difference in fracture load was observed. However, a clear difference in the fracture pattern has been identified.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Fracturas Periprotésicas , Fenómenos Biomecánicos , Fémur/cirugía , Humanos , Fracturas Periprotésicas/etiología , Fracturas Periprotésicas/cirugía , Diseño de Prótesis
11.
Am J Sports Med ; 49(4): 994-1004, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33560867

RESUMEN

BACKGROUND: The anatomic appearance and biomechanical and clinical importance of the anterior meniscus roots are well described. However, little is known about the loads that act on these attachment structures under physiological joint loads and movements. HYPOTHESES: As compared with uniaxial loading conditions under static knee flexion angles or at very low flexion-extension speeds, more realistic continuous movement simulations in combination with physiological muscle force simulations lead to significantly higher anterior meniscus attachment forces. This increase is even more pronounced in combination with a longitudinal meniscal tear or after total medial meniscectomy. STUDY DESIGN: Controlled laboratory study. METHODS: A validated Oxford Rig-like knee simulator was used to perform a slow squat, a fast squat, and jump landing maneuvers on 9 cadaveric human knee joints, with and without muscle force simulation. The strains in the anterior medial and lateral meniscal periphery and the respective attachments were determined in 3 states: intact meniscus, medial longitudinal tear, and total medial meniscectomy. To determine the attachment forces, a subsequent in situ tensile test was performed. RESULTS: Muscle force simulation resulted in a significant strain increase at the anterior meniscus attachments of up to 308% (P < .038) and the anterior meniscal periphery of up to 276%. This corresponded to significantly increased forces (P < .038) acting in the anteromedial attachment with a maximum force of 140 N, as determined during the jump landing simulation. Meniscus attachment strains and forces were significantly influenced (P = .008) by the longitudinal tear and meniscectomy during the drop jump simulation. CONCLUSION: Medial and lateral anterior meniscus attachment strains and forces were significantly increased with physiological muscle force simulation, corroborating our hypothesis. Therefore, in vitro tests applying uniaxial loads combined with static knee flexion angles or very low flexion-extension speeds appear to underestimate meniscus attachment forces. CLINICAL RELEVANCE: The data of the present study might help to optimize the anchoring of meniscal allografts and artificial meniscal substitutes to the tibial plateau. Furthermore, this is the first in vitro study to indicate reasonable minimum stability requirements regarding the reattachment of torn anterior meniscus roots.


Asunto(s)
Lesiones de Menisco Tibial , Fenómenos Biomecánicos , Cadáver , Humanos , Articulación de la Rodilla/cirugía , Meniscectomía , Meniscos Tibiales/cirugía , Lesiones de Menisco Tibial/cirugía
12.
Laryngoscope ; 131(2): E561-E568, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32585046

RESUMEN

OBJECTIVES: Transoral surgery of the larynx with rigid instruments is not always possible. This may result in insufficient therapy or in an increased need for open surgery. For these patients, alternative surgical systems are needed. Here, we demonstrate a curved prototype for laryngeal surgery equipped with flexible instruments. STUDY DESIGN: Pre-clinical user study in an ex vivo porcine laryngeal model. METHODS: The prototype was built from established medical devices, namely a hyperangulated videolaryngoscope and modified flexible instruments as well as three-dimensional printed parts. Feasibility of laryngeal manipulation was evaluated in a user study (n = 19) with a porcine ex vivo laryngeal model. Using three different visualization technologies, the participants performed various fine motor skills tasks and rated the usability of the system on a 5-point Likert scale. RESULTS: Exposure, accessibility, and manipulation of important laryngeal structures were always possible using the new prototype. The participants needed considerably less time (mean, 96.4 seconds ± 6.4 seconds vs. 111.5 seconds ± 4.5 seconds, P = .18), reported significantly better general impression (mean score 3.0 vs. 3.8, P = .041) and significantly lower user head and neck strain (2.6 vs. 1.7, P = .022) using a 40-inch television screen as compared to a standard videolaryngoscope monitor. CONCLUSION: The results indicate that our curved prototype and large monitor visualization may provide a cost-effective minimally invasive alternative for difficult laryngeal exposure. Its special advantages include avoiding the need for a straight line of sight and a simple and cost-effective construction. The system could be further improved through advances in camera chip technology and smaller instruments. Laryngoscope, 131:E561-E568, 2021.


Asunto(s)
Laringoscopios , Laringe/cirugía , Cirugía Asistida por Video/instrumentación , Animales , Laringoscopía/instrumentación , Laringoscopía/métodos , Porcinos , Cirugía Asistida por Video/métodos
13.
Front Bioeng Biotechnol ; 8: 582055, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042980

RESUMEN

Degenerative changes of menisci contribute to the evolution of osteoarthritis in the knee joint, because they alter the load transmission to the adjacent articular cartilage. Identifying alterations in the strain response of meniscal tissue under compression that are associated with progressive degeneration may uncover links between biomechanical function and meniscal degeneration. Therefore, the goal of this study was to investigate how degeneration effects the three-dimensional (3D; axial, circumferential, radial) strain in different anatomical regions of human menisci (anterior and posterior root attachment; anterior and posterior horn; pars intermedia) under simulated compression. Magnetic resonance imaging (MRI) was performed to acquire image sequences of 12 mild and 12 severe degenerated knee joints under unloaded and loaded [25%, 50% and 100% body weight (BW)] conditions using a customized loading device. Medial and lateral menisci as well as their root attachments were manually segmented. Intensity-based rigid and non-rigid image registration were performed to obtain 3D deformation fields under the respective load levels. Finally, the 3D voxels were transformed into hexahedral finite-element models and direction-dependent local strain distributions were determined. The axial compressive strain in menisci and meniscal root attachments significantly increased on average from 3.1% in mild degenerated joints to 7.3% in severe degenerated knees at 100% BW (p ≤ 0.021). In severe degenerated knee joints, the menisci displayed a mean circumferential strain of 0.45% (mild: 0.35%) and a mean radial strain of 0.41% (mild: 0.37%) at a load level of 100% BW. No significant changes were observed in the circumferential or radial directions between mild and severe degenerated knee joints for all load levels (p > 0.05). In conclusion, high-resolution MRI was successfully combined with image registration to investigate spatial strain distributions of the meniscus and its attachments in response to compression. The results of the current study highlight that the compressive integrity of the meniscus decreases with progressing tissue degeneration, whereas the tensile properties are maintained.

14.
Artif Intell Med ; 105: 101849, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32505421

RESUMEN

Magnetic resonance imaging (MRI) has proved to be an invaluable component of pathogenesis research in osteoarthritis. Nevertheless, the detection of a meniscal lesion from magnetic resonance (MR) images is always challenging for both clinicians and researchers, because the surrounding tissues lead to similar signals within MR measurements, thus being difficult to discriminate. Moreover, the size and shape of osteoarthritic and non-osteoarthritic menisci vary to a large extent between individuals of same features, e.g. height, weight, age, etc. An effective way to visualize the entire volume of knee menisci is to segment the menisci voxels from the MR images, which is also useful to evaluate particular properties quantitatively. However, segmentation is a tedious and time-consuming task, and requires adequate training for being done properly. With the advancement of both MRI technology and computer methods, researchers have developed several algorithms to automate the task of meniscus segmentation of the individual knee during the last two decades. The objective of this systematic review was to present available fully automatic and semi-automatic segmentation methods of the knee meniscus published in different scientific articles according to the PRISMA statement. This review should provide a vivid description of the scientific advancements to clinicians and researchers in this field to help developing novel automated methods for clinical applications.


Asunto(s)
Menisco , Osteoartritis , Algoritmos , Humanos , Articulación de la Rodilla/diagnóstico por imagen , Imagen por Resonancia Magnética , Menisco/diagnóstico por imagen
15.
Artículo en Inglés | MEDLINE | ID: mdl-31612132

RESUMEN

The in vitro determination of realistic loads acting in knee ligaments, articular cartilage, menisci and their attachments during daily activities require the creation of physiological muscle forces, ground reaction force and unconstrained kinematics. However, no in vitro test setup is currently available that is able to simulate such physiological loads during squatting and jump landing exercises. Therefore, a novel knee joint simulator allowing such physiological loads in combination with realistic, rapid movements is presented. To gain realistic joint positions and muscle forces serving as input parameters for the simulator, a combined in vivo motion analysis and inverse dynamics (MAID) study was undertaken with 11 volunteers performing squatting and jump landing exercises. Subsequently, an in vitro study using nine human knee joint specimens was conducted to prove the functionality of the simulator. To do so, slow squatting without muscle force simulation representing quasi-static loading conditions and slow squatting and jump landing with physiological muscle force simulation were carried out. During all tests ground reaction force, tibiofemoral contact pressure, and tibial rotation characteristics were simultaneously recorded. The simulated muscle forces obtained were in good correlation (0.48 ≤ R ≤ 0.92) with those from the in vivo MAID study. The resulting vertical ground reaction force showed a correlation of R = 0.93. On the basis of the target parameters of ground reaction force, tibiofemoral contact pressure and tibial rotation, it could be concluded that the knee joint load was loaded physiologically. Therefore, this is the first in vitro knee joint simulator allowing squatting and jump landing exercises in combination with physiological muscle forces that finally result in realistic ground reaction forces and physiological joint loading conditions.

16.
J Orthop Res ; 37(12): 2583-2592, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31403212

RESUMEN

The aim of the current study was to verify if a previously developed silk fibroin scaffold for meniscal replacement is able to restore the physiological distribution of contact pressure (CP) over the articulating surfaces in the human knee joint, thereby reducing peak loads occurring after partial meniscectomy. The pressure distribution on the medial tibial articular surface of seven human cadaveric knee joints was analysed under continuous flexion-extension movements and under physiological loads up to 2,500 N at different flexion angles. Contact area (CA), maximum tibiofemoral CP, maximum pressure under the meniscus and the pressure distribution were analysed for the intact meniscus, after partial meniscectomy as well as after partial medial meniscal replacement using the silk fibroin scaffold. Implantation of the silk fibroin scaffold considerably improved tibiofemoral contact mechanics after partial medial meniscectomy. While the reduced CA after meniscectomy was not fully restored by the silk fibroin scaffold, clinically relevant peak pressures on the articular cartilage surface occurring after partial meniscectomy were significantly reduced. Nevertheless, at high flexion angles static testing demonstrated that normal pressure distribution comparable to the intact meniscus could not be fully achieved. The current study demonstrates that the silk fibroin implant possesses attributes that significantly improve tibiofemoral CPs within the knee joint following partial meniscectomy. However, the failure to fully recapitulate the CAs and pressures observed in the intact meniscus, particularly at high flexion angles, indicates that the implant's biomechanical properties may require further improvement to completely restore tibiofemoral contact mechanics. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 37:2583-2592, 2019.


Asunto(s)
Meniscos Tibiales/cirugía , Andamios del Tejido , Fémur/fisiología , Fibroínas , Humanos , Meniscos Tibiales/fisiología , Presión , Estrés Mecánico , Tibia/fisiología
17.
J Mech Behav Biomed Mater ; 96: 236-243, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31059899

RESUMEN

Cartilage grafts have become popular in facial plastic surgery to reconstruct defects or to improve aesthetic outcomes in various applications. But there is a considerable rate of graft failure like resorption or deformation. To improve graft survival and function, accurate understanding of the properties of the recipient site is indispensable. Therefore 10 noses of human cadavers were meticulously dissected and specimens of alar and septal cartilage subjected to confined compression and tensile tests. Furthermore, cell number, glycosaminoglycan and hydroxyproline content were measured. RESULTS: showed a significant difference (p < 0.05) of alar and septal cartilage regarding Equilibrium Modulus, cell number and glycosaminoglycan but not hydroxyproline content. Tensile tests showed a significant difference (p < 0.001) between alar and septal cartilage (vertical vector of force) for E-modulus, maximal force and maximal strain but not for horizontal vector of force. There was a significant difference (p < 0.05) within septal cartilage samples depending on vector of force (vertical vs. horizontal). Finally multifactorial linear regression allowed an estimation of Equilibrium Modulus depending on compression, glycosaminoglycan content and cell number with statistical significance (p < 0.05). In conclusion, nasal cartilage differs in function and composition depending on anatomical location and the prevalent forces. Therefore further research will be necessary to evaluate if graft failure depends on a mismatch of functional properties and if grafts can be adapted to the recipient site.


Asunto(s)
Fenómenos Mecánicos , Cartílagos Nasales , Adulto , Anciano , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Ensayo de Materiales , Persona de Mediana Edad , Cirugía Plástica , Resistencia a la Tracción
18.
Clin Biomech (Bristol, Avon) ; 67: 78-84, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31077979

RESUMEN

BACKGROUND: Neer Type IIb lateral clavicle fractures typically lead to dislocation of the medial fragment. Therefore, most surgeons recommend surgical treatment for such a fracture pattern. The use of a locking compression plate with a lateral extension has produced satisfactory results in various studies over recent years. Double-plate fixation is a common technique in the treatment of complex distal radius fractures. The authors use this technique as a routine procedure in the treatment of Neer type IIb fractures. In this biomechanical testing study, the mechanical properties of the two techniques were compared. METHODS: On 20 clavicles from fresh frozen cadavers a Neer Type IIb fracture-like osteotomy was performed. A cyclic loading test followed by a load-to-failure test was carried out. Parameters for statistical evaluation were the stiffness at cycles 1, 100 and 17,500 as well as the ultimate tensile load and the deformation at the point of failure. FINDINGS: All specimens withstood the cyclic loading test without any noticeable damage. At cycles 100 and 17,500, the double-plate technique was less stiff. Failure loads were not significantly different from each other, but deformation at the point of failure was significantly greater for the double-plate technique. INTERPRETATION: Both techniques provided sufficient fixation to the fracture site to endure the cyclic loading test, which is supposed to simulate an incident-free week postoperatively. In summary, the double-plate technique offers biomechanically a feasible alternative to the single-plate technique in lateral clavicle fractures of Neer Type IIb.


Asunto(s)
Placas Óseas , Clavícula/cirugía , Fijación Interna de Fracturas/métodos , Fracturas Óseas/cirugía , Anciano , Fenómenos Biomecánicos , Cadáver , Femenino , Humanos , Luxaciones Articulares , Masculino , Persona de Mediana Edad , Osteotomía , Estrés Mecánico
19.
Sci Rep ; 9(1): 5785, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962482

RESUMEN

Most previous studies investigated the remarkably low and complex friction properties of meniscus and cartilage under constant loading and motion conditions. However, both load and relative velocity within the knee joint vary considerably during physiological activities. Hence, the question arises how friction of both tissues is affected by physiological testing conditions occurring during gait. As friction properties are of major importance for meniscal replacement devices, the influence of these simulated physiological testing conditions was additionally tested for a potential meniscal implant biomaterial. Using a dynamic friction testing device, three different friction tests were conducted to investigate the influence of either just varying the motion conditions or the normal load and also to replicate the physiological gait conditions. It could be shown for the first time that the friction coefficient during swing phase was statistically higher than during stance phase when varying both loading and motion conditions according to the physiological gait pattern. Further, the friction properties of the exemplary biomaterial were also higher, when tested under dynamic gait parameters compared to static conditions, which may suggest that static conditions can underestimate the friction coefficient rather than reflecting the in vivo performance.


Asunto(s)
Cartílago Articular/fisiología , Fricción , Marcha , Menisco/fisiología , Animales , Fenómenos Biomecánicos , Cartílago Articular/química , Bovinos , Menisco/química , Movimiento (Física) , Soporte de Peso
20.
Stem Cells ; 37(8): 1057-1074, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002437

RESUMEN

In this study, we report the beneficial effects of a newly identified dermal cell subpopulation expressing the ATP-binding cassette subfamily B member 5 (ABCB5) for the therapy of nonhealing wounds. Local administration of dermal ABCB5+ -derived mesenchymal stem cells (MSCs) attenuated macrophage-dominated inflammation and thereby accelerated healing of full-thickness excisional wounds in the iron-overload mouse model mimicking the nonhealing state of human venous leg ulcers. The observed beneficial effects were due to interleukin-1 receptor antagonist (IL-1RA) secreted by ABCB5+ -derived MSCs, which dampened inflammation and shifted the prevalence of unrestrained proinflammatory M1 macrophages toward repair promoting anti-inflammatory M2 macrophages at the wound site. The beneficial anti-inflammatory effect of IL-1RA released from ABCB5+ -derived MSCs on human wound macrophages was conserved in humanized NOD-scid IL2rγ null mice. In conclusion, human dermal ABCB5+ cells represent a novel, easily accessible, and marker-enriched source of MSCs, which holds substantial promise to successfully treat chronic nonhealing wounds in humans. Stem Cells 2019;37:1057-1074.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Dermis/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Sobrecarga de Hierro/metabolismo , Úlcera de la Pierna/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas , Animales , Línea Celular , Dermis/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Sobrecarga de Hierro/patología , Úlcera de la Pierna/patología , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...