Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
2.
Nucleic Acids Res ; 51(15): 7988-8004, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37395445

RESUMEN

Fanconi anemia (FA) is a genetic disorder associated with developmental defects, bone marrow failure and cancer. The FA pathway is crucial for the repair of DNA interstrand crosslinks (ICLs). In this study, we have developed and characterized a new tool to investigate ICL repair: a clickable version of the crosslinking agent melphalan which we name click-melphalan. Our results demonstrate that click-melphalan is as effective as its unmodified counterpart in generating ICLs and associated toxicity. The lesions induced by click-melphalan can be detected in cells by post-labelling with a fluorescent reporter and quantified using flow cytometry. Since click-melphalan induces both ICLs and monoadducts, we generated click-mono-melphalan, which only induces monoadducts, in order to distinguish between the two types of DNA repair. By using both molecules, we show that FANCD2 knock-out cells are deficient in removing click-melphalan-induced lesions. We also found that these cells display a delay in repairing click-mono-melphalan-induced monoadducts. Our data further revealed that the presence of unrepaired ICLs inhibits monoadduct repair. Finally, our study demonstrates that these clickable molecules can differentiate intrinsic DNA repair deficiencies in primary FA patient cells from those in primary xeroderma pigmentosum patient cells. As such, these molecules may have potential for developing diagnostic tests.


Asunto(s)
Anemia de Fanconi , Melfalán , Humanos , Melfalán/farmacología , Anemia de Fanconi/patología , Reparación del ADN , Daño del ADN , ADN
3.
Cell Stem Cell ; 30(2): 153-170.e9, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736290

RESUMEN

Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.


Asunto(s)
Anemia de Fanconi , Leucemia , Humanos , Ratones , Animales , Anemia de Fanconi/genética , Hematopoyesis Clonal , Trisomía/genética , Proteína p53 Supresora de Tumor/genética , Leucemia/genética , Cromosomas , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Ciclo Celular/genética
4.
Oncol Lett ; 22(6): 835, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34712359

RESUMEN

Von Hippel-Lindau (VHL) disease is the main cause of inherited clear-cell renal cell carcinoma (ccRCC) and is caused by germline mutations in the VHL tumor suppressor gene. Bi-allelic VHL alterations lead to inactivation of pVHL, which plays a major role by downstream activation of the hypoxia inducible factor (HIF) pathway. Somatic VHL mutations occur in 80% of sporadic ccRCC cases and the second most frequently mutated gene is polybromo 1 (PBRM1). As there is currently no data regarding PBRM1 involvement in VHL disease-associated ccRCC, the aim of the present study was to assess the PBRM1 mutational status, and PBRM1 and HIF expression in VHL disease-associated ccRCC series compared with a sporadic series. PBRM1 gene was screened by Sanger sequencing for 23 VHL-disease-associated ccRCC and 22 sporadic ccRCC cases. Immunohistochemical studies were performed to detect the expression of PBRM1, HIF1 and HIF2 for all cases. In VHL-associated tumors, 13.0% (n=3/23) had PBRM1 somatic mutations and 17.4% (n=4/23) had a loss of PBRM1 nuclear expression. In sporadic cases, 27.3% (n=6/22) showed PBRM1 somatic mutations and 45.5% (n=10/22) had a loss of PBRM1 nuclear expression. Loss of PBRM1 was associated with an advanced tumor stage. HIF1-positive tumors were observed more frequently in the VHL-associated ccRCC than in the sporadic series. Furthermore, in the VHL cohort, PBRM1 expression appeared to be associated more with HIF1 than with HIF2. Given that hereditary tumors tend to be less aggressive, these results would suggest that co-expression of PBRM1 and HIF1 may have a less oncogenic role in VHL-associated ccRCC.

5.
Blood ; 134(17): 1441-1444, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31484648

RESUMEN

Germline DDX41 mutations are involved in familial myelodysplastic syndromes (MDSs) and acute myeloid leukemias (AMLs). We analyzed the prevalence and characteristics of DDX41-related myeloid malignancies in an unselected cohort of 1385 patients with MDS or AML. Using targeted next-generation sequencing, we identified 28 different germline DDX41 variants in 43 unrelated patients, which we classified as causal (n = 21) or unknown significance (n = 7) variants. We focused on the 33 patients having causal variants, representing 2.4% of our cohort. The median age was 69 years; most patients were men (79%). Only 9 patients (27%) had a family history of hematological malignancy, and 15 (46%) had a personal history of cytopenia years before MDS/AML diagnosis. Most patients had a normal karyotype (85%), and the most frequent somatic alteration was a second DDX41 mutation (79%). High-risk DDX41 MDS/AML patients treated with intensive chemotherapy (n = 9) or azacitidine (n = 11) had an overall response rate of 100% or 73%, respectively, with a median overall survival of 5.2 years. Our study highlights that germline DDX41 mutations are relatively common in adult MDS/AML, often without known family history, arguing for systematic screening. Salient features of DDX41-related myeloid malignancies include male preponderance, frequent preexisting cytopenia, additional somatic DDX41 mutation, and relatively good outcome.


Asunto(s)
ARN Helicasas DEAD-box/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Mutación de Línea Germinal , Humanos , Masculino , Persona de Mediana Edad
6.
Blood ; 131(7): 717-732, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29146883

RESUMEN

Bone marrow (BM) failure (BMF) in children and young adults is often suspected to be inherited, but in many cases diagnosis remains uncertain. We studied a cohort of 179 patients (from 173 families) with BMF of suspected inherited origin but unresolved diagnosis after medical evaluation and Fanconi anemia exclusion. All patients had cytopenias, and 12.0% presented ≥5% BM blast cells. Median age at genetic evaluation was 11 years; 20.7% of patients were aged ≤2 years and 36.9% were ≥18 years. We analyzed genomic DNA from skin fibroblasts using whole-exome sequencing, and were able to assign a causal or likely causal germ line mutation in 86 patients (48.0%), involving a total of 28 genes. These included genes in familial hematopoietic disorders (GATA2, RUNX1), telomeropathies (TERC, TERT, RTEL1), ribosome disorders (SBDS, DNAJC21, RPL5), and DNA repair deficiency (LIG4). Many patients had an atypical presentation, and the mutated gene was often not clinically suspected. We also found mutations in genes seldom reported in inherited BMF (IBMF), such as SAMD9 and SAMD9L (N = 16 of the 86 patients, 18.6%), MECOM/EVI1 (N = 6, 7.0%), and ERCC6L2 (N = 7, 8.1%), each of which was associated with a distinct natural history; SAMD9 and SAMD9L patients often experienced transient aplasia and monosomy 7, whereas MECOM patients presented early-onset severe aplastic anemia, and ERCC6L2 patients, mild pancytopenia with myelodysplasia. This study broadens the molecular and clinical portrait of IBMF syndromes and sheds light on newly recognized disease entities. Using a high-throughput sequencing screen to implement precision medicine at diagnosis can improve patient management and family counseling.


Asunto(s)
Enfermedades de la Médula Ósea/genética , Mutación de Línea Germinal , Adolescente , Enfermedades de la Médula Ósea/epidemiología , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Síndromes Mielodisplásicos/epidemiología , Síndromes Mielodisplásicos/genética , Secuenciación del Exoma
7.
J Med Genet ; 52(6): 426-30, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25911086

RESUMEN

BACKGROUND: Many cases of familial renal cell carcinoma (RCC) remain unexplained by mutations in the known predisposing genes or shared environmental factors. There are therefore additional, still unidentified genes involved in familial RCC. PBRM1 is a tumour suppressor gene and somatic mutations are found in 30-45% of sporadic clear cell (cc) RCC. METHODS: We selected 35 unrelated patients with unexplained personal history of ccRCC and at least one affected first-degree relative, and sequenced the PBRM1 gene. RESULTS: A germline frameshift mutation (c.3998_4005del [p.Asp1333Glyfs]) was found in one patient. The patient's mother, his sister and one niece also had ccRCC. The mutation co-segregated with the disease as the three affected relatives were carriers, while an unaffected sister was not, according with autosomal-dominant transmission. Somatic studies supported these findings, as we observed both loss of heterozygosity for the mutation and loss of protein expression in renal tumours. CONCLUSIONS: We show for the first time that an inherited mutation in PBRM1 predisposes to RCC. International studies are necessary to estimate the contribution of PBRM1 to RCC susceptibility, estimate penetrance and then integrate the gene into routine clinical practice.


Asunto(s)
Carcinoma de Células Renales/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Neoplasias Renales/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Carcinoma de Células Renales/diagnóstico , Análisis Mutacional de ADN , Proteínas de Unión al ADN , Exones , Femenino , Heterocigoto , Humanos , Inmunohistoquímica , Neoplasias Renales/diagnóstico , Masculino , Proteínas Nucleares/metabolismo , Linaje , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA