Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Antiviral Res ; 229: 105968, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004311

RESUMEN

Since human angiotensin-converting enzyme 2 (ACE2) serves as a primary receptor for SARS-CoV-2, characterizing ACE2 regions that allow SARS-CoV-2 to enter human cells is essential for designing peptide-based antiviral blockers and elucidating the pathogenesis of the virus. We identified and synthesized a 25-mer mimetic peptide (encompassing positions 22-46 of the ACE2 alpha-helix α1) implicated in the S1 receptor-binding domain (RBD)-ACE2 interface. The mimetic (wild-type, WT) ACE2 peptide significantly inhibited SARS-CoV-2 infection of human pulmonary Calu-3 cells in vitro. In silico protein modeling predicted that residues F28, K31, F32, F40, and Y41 of the ACE2 alpha-helix α1 are critical for the original, Delta, and Omicron strains of SARS-CoV-2 to establish the Spike RBD-ACE2 interface. Substituting these residues with alanine (A) or aspartic acid (D) abrogated the antiviral protective effect of the peptides, indicating that these positions are critical for viral entry into pulmonary cells. WT ACE2 peptide, but not the A or D mutated peptides, exhibited significant interaction with the SARS-CoV-2 S1 RBD, as shown through molecular dynamics simulations. Through identifying the critical amino acid residues of the ACE2 alpha-helix α1, which is necessary for the Spike RBD-ACE2 interface and mobilized during the in vitro viral infection of cells, we demonstrated that the WT ACE2 peptide protects susceptible K18-hACE2 mice against in vivo SARS-CoV-2 infection and is effective for the treatment of COVID-19.

2.
Adv Funct Mater ; 34(10)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38465199

RESUMEN

Preclinical human-relevant modeling of organ-specific vasculature offers a unique opportunity to recreate pathophysiological intercellular, tissue-tissue, and cell-matrix interactions for a broad range of applications. Here, we present a reliable, and simply reproducible process for constructing user-controlled long rounded extracellular matrix (ECM)-embedded vascular microlumens on-chip for endothelization and co-culture with stromal cells obtained from human lung. We demonstrate the critical impact of microchannel cross-sectional geometry and length on uniform distribution and magnitude of vascular wall shear stress, which is key when emulating in vivo-observed blood flow biomechanics in health and disease. In addition, we provide an optimization protocol for multicellular culture and functional validation of the system. Moreover, we show the ability to finely tune rheology of the three-dimensional natural matrix surrounding the vascular microchannel to match pathophysiological stiffness. In summary, we provide the scientific community with a matrix-embedded microvasculature on-chip populated with all-primary human-derived pulmonary endothelial cells and fibroblasts to recapitulate and interrogate lung parenchymal biology, physiological responses, vascular biomechanics, and disease biogenesis in vitro. Such a mix-and-match synthetic platform can be feasibly adapted to study blood vessels, matrix, and ECM-embedded cells in other organs and be cellularized with additional stromal cells.

3.
J Biol Chem ; 300(3): 105700, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307383

RESUMEN

Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.


Asunto(s)
Complejo 1 de Proteína Adaptadora , ATPasas Transportadoras de Cobre , Endosomas , Transporte de Proteínas , Receptor IGF Tipo 2 , Red trans-Golgi , Humanos , Endosomas/metabolismo , Células HeLa , Transporte de Proteínas/genética , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Red trans-Golgi/genética , Red trans-Golgi/metabolismo , ATPasas Transportadoras de Cobre/genética , ATPasas Transportadoras de Cobre/metabolismo , Complejo 1 de Proteína Adaptadora/genética , Complejo 1 de Proteína Adaptadora/metabolismo , Subunidades gamma de Complejo de Proteína Adaptadora/metabolismo
4.
Mol Cell Proteomics ; 22(12): 100676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940003

RESUMEN

Extracellular vesicles (EVs) are biomolecule carriers for intercellular communication in health and disease. Nef is a HIV virulence factor that is released from cells within EVs and is present in plasma EVs of HIV-1 infected individuals. We performed a quantitative proteomic analysis to fully characterize the Nef-induced changes in protein composition of T cell-derived EVs and identify novel host targets of HIV. Several proteins with well-described roles in infection or not previously associated with HIV pathogenesis were specifically modulated by Nef in EVs. Among the downregulated proteins are the interferon-induced transmembrane 1, 2, and 3 (IFITM1-3) proteins, broad-spectrum antiviral factors known to be cell-to-cell transferable by EVs. We demonstrate that Nef depletes IFITM1-3 from EVs by excluding these proteins from the plasma membrane and lipid rafts, which are sites of EVs biogenesis in T cells. Our data establish Nef as a modulator of EVs' global protein content and as an HIV factor that antagonizes IFITMs.


Asunto(s)
Vesículas Extracelulares , Infecciones por VIH , VIH-1 , Humanos , Linfocitos T , Proteoma/metabolismo , Proteómica , Vesículas Extracelulares/metabolismo , Interferones/metabolismo , Infecciones por VIH/metabolismo , Antivirales/metabolismo
5.
J Gen Virol ; 104(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083579

RESUMEN

Unlike many segmented negative-sense RNA viruses, most members of the Bunyavirales bud at Golgi membranes, as opposed to the plasma membrane. Central players in this assembly process are the envelope glycoproteins, Gn and Gc, which upon translation undergo proteolytic processing, glycosylation and trafficking to the Golgi, where they interact with ribonucleoprotein genome segments and bud into Golgi-derived compartments. The processes involved in genome packaging during virion assembly can lead to the generation of reassorted viruses, if a cell is co-infected with two different bunyaviruses, due to mismatching of viral genome segment packaging. This can lead to viruses with high pathogenic potential, as demonstrated by the emergence of Schmallenberg virus. This review focuses on the assembly pathways of tri-segmented bunyaviruses, highlighting some areas in need of further research to understand these important pathogens with zoonotic potential.


Asunto(s)
Orthobunyavirus , Virus ARN , Orthobunyavirus/genética , Glicosilación , Ensamble de Virus
6.
Nat Commun ; 14(1): 1612, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959220

RESUMEN

Accurately measuring the ability of the K/HDEL receptor (ERD2) to retain the ER cargo Amy-HDEL has questioned earlier results on which the popular receptor recycling model is based upon. Here we demonstrate that ERD2 Golgi-retention, rather than fast ER export supports its function. Ligand-induced ERD2 redistribution is only observed when the C-terminus is masked or mutated, compromising the signal that prevents Golgi-to-ER transport of the receptor. Forcing COPI mediated retrograde transport destroys receptor function, but introducing ER-to-Golgi export or cis-Golgi retention signals re-activate ERD2 when its endogenous Golgi-retention signal is masked or deleted. We propose that ERD2 remains fixed as a Golgi gatekeeper, capturing K/HDEL proteins when they arrive and releasing them again into a subdomain for retrograde transport back to the ER. An in vivo ligand:receptor ratio far greater than 100 to 1 strongly supports this model, and the underlying mechanism appears to be extremely conserved across kingdoms.


Asunto(s)
Proteínas de la Membrana , Receptores de Péptidos , Proteínas de la Membrana/metabolismo , Ligandos , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Proteínas Portadoras/metabolismo , Aparato de Golgi/metabolismo
7.
J Virol ; 97(1): e0133122, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36475765

RESUMEN

Oropouche virus (OROV; genus Orthobunyavirus) is the etiological agent of Oropouche fever, a debilitating febrile illness common in South America. We used recombinant expression of the OROV M polyprotein, which encodes the surface glycoproteins Gn and Gc plus the nonstructural protein NSm, to probe the cellular determinants for OROV assembly and budding. Gn and Gc self-assemble and are secreted independently of NSm. Mature OROV Gn has two predicted transmembrane domains that are crucial for glycoprotein translocation to the Golgi complex and glycoprotein secretion, and unlike related orthobunyaviruses, both transmembrane domains are retained during Gn maturation. Disruption of Golgi function using the drugs brefeldin A and monensin inhibits glycoprotein secretion. Infection studies have previously shown that the cellular endosomal sorting complexes required for transport (ESCRT) machinery is recruited to Golgi membranes during OROV assembly and that ESCRT activity is required for virus secretion. A dominant-negative form of the ESCRT-associated ATPase VPS4 significantly reduces recombinant OROV glycoprotein secretion and blocks virus release from infected cells, and VPS4 partly colocalizes with OROV glycoproteins and membranes costained with Golgi markers. Furthermore, immunoprecipitation and fluorescence microscopy experiments demonstrate that OROV glycoproteins interact with the ESCRT-III component CHMP6, with overexpression of a dominant-negative form of CHMP6 significantly reducing OROV glycoprotein secretion. Taken together, our data highlight differences in M polyprotein processing across orthobunyaviruses, indicate that Golgi and ESCRT function are required for glycoprotein secretion, and identify CHMP6 as an ESCRT-III component that interacts with OROV glycoproteins. IMPORTANCE Oropouche virus causes Oropouche fever, a debilitating illness common in South America that is characterized by high fever, headache, myalgia, and vomiting. The tripartite genome of this zoonotic virus is capable of reassortment, and there have been multiple epidemics of Oropouche fever in South America over the last 50 years, making Oropouche virus infection a significant threat to public health. However, the molecular characteristics of this arbovirus are poorly understood. We developed a recombinant protein expression system to investigate the cellular determinants of OROV glycoprotein maturation and secretion. We show that the proteolytic processing of the M polypeptide, which encodes the surface glycoproteins (Gn and Gc) plus a nonstructural protein (NSm), differs between OROV and its close relative Bunyamwera virus. Furthermore, we demonstrate that OROV M glycoprotein secretion requires the cellular endosomal sorting complexes required for transport (ESCRT) membrane-remodeling machinery and identify that the OROV glycoproteins interact with the ESCRT protein CHMP6.


Asunto(s)
Infecciones por Bunyaviridae , Complejos de Clasificación Endosomal Requeridos para el Transporte , Glicoproteínas de Membrana , Orthobunyavirus , Proteínas Virales , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Orthobunyavirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
J Biol Chem ; 298(8): 102172, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35753347

RESUMEN

One of the hallmarks of Alzheimer's disease is the accumulation of toxic amyloid-ß (Aß) peptides in extracellular plaques. The direct precursor of Aß is the carboxyl-terminal fragment ß (or C99) of the amyloid precursor protein (APP). C99 is detected at elevated levels in Alzheimer's disease brains, and its intracellular accumulation has been linked to early neurotoxicity independently of Aß. Despite this, the causes of increased C99 levels are poorly understood. Here, we demonstrate that APP interacts with the clathrin vesicle adaptor AP-1 (adaptor protein 1), and we map the interaction sites on both proteins. Using quantitative kinetic trafficking assays, established cell lines and primary neurons, we also show that this interaction is required for the transport of APP from the trans-Golgi network to endosomes. In addition, disrupting AP-1-mediated transport of APP alters APP processing and degradation, ultimately leading to increased C99 production and Aß release. Our results indicate that AP-1 regulates the subcellular distribution of APP, altering its processing into neurotoxic fragments.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Aparato de Golgi , Síndromes de Neurotoxicidad , Proteínas Adaptadoras del Transporte Vesicular , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Aparato de Golgi/metabolismo , Humanos , Factor de Transcripción AP-1/genética
9.
Front Cell Dev Biol ; 9: 622610, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34307340

RESUMEN

The human immunodeficiency virus (HIV-1) modifies the host cell environment to ensure efficient and sustained viral replication. Key to these processes is the capacity of the virus to hijack ATPases, GTPases and the associated proteins that control intracellular protein trafficking. The functions of these energy-harnessing enzymes can be seized by HIV-1 to allow the intracellular transport of viral components within the host cell or to change the subcellular distribution of antiviral factors, leading to immune evasion. Here, we summarize how energy-related proteins deviate from their normal functions in host protein trafficking to aid the virus in different phases of its replicative cycle. Recent discoveries regarding the interplay among HIV-1 and host ATPases and GTPases may shed light on potential targets for pharmacological intervention.

10.
Int Arch Allergy Immunol ; 182(8): 697-708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33657571

RESUMEN

INTRODUCTION: Prevention of attacks is a major goal in management of patients with hereditary angioedema (HAE). We aimed to investigate the effects of a systematic intervention for HAE patients. METHODS: Thirty-three patients with HAE with C1-inhibitor deficiency, belonging to a single family, participated in a management program coordinated by an allergist/immunologist. Angioedema attacks before intervention were ascertained by interviews and emergency room charts and recorded prospectively by patients or caregivers after enrollment. Mean number of attacks/month was compared at 12 months preintervention and 8 and 14 months within intervention. Patient-reported outcome instruments were used to assess quality of life, including HAE Quality of Life (HAE-QoL) questionnaire, psychological conditions, and work impairment, at baseline and 8 and 14 months within intervention. Data were stored in REDCap platform and analyzed by adjusted Bayesian models of double Poisson regression. RESULTS: Mean number of attacks/month significantly decreased (95% credible interval [CrI] excluding 0) from 1.15 preintervention to 0.25 and 0.23, 8 and 14 months within intervention, with mean decreases of -0.89 (95% CrI: -1.21 to -0.58) and -0.92 (95% CrI: -1.22 to -0.60), respectively. HAE-QoL scores showed mean total increases of 15.2 (95% CrI: 1.23-29.77) and 26 (95% CrI: 14.56-39.02) at 8 and 14 months within the study, as compared to baseline, revealing marked improvement in quality of life. Significant increase in role-emotional and reduction of depression, stress, and anxiety were observed at 14 months. CONCLUSION: A systematic approach integrating HAE-specific care with effective handling of psychological issues decreased the number of attacks and improved quality of life, targets for best practice in HAE.


Asunto(s)
Angioedemas Hereditarios/epidemiología , Calidad de Vida , Angioedemas Hereditarios/prevención & control , Angioedemas Hereditarios/psicología , Angioedemas Hereditarios/terapia , Ansiedad , Teorema de Bayes , Manejo de la Enfermedad , Progresión de la Enfermedad , Emociones , Encuestas de Atención de la Salud , Humanos , Encuestas y Cuestionarios
11.
mBio ; 11(5)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994321

RESUMEN

Human respiratory syncytial virus (HRSV) envelope glycoproteins traffic to assembly sites through the secretory pathway, while nonglycosylated proteins M and N are present in HRSV inclusion bodies but must reach the plasma membrane, where HRSV assembly happens. Little is known about how nonglycosylated HRSV proteins reach assembly sites. Here, we show that HRSV M and N proteins partially colocalize with the Golgi marker giantin, and the glycosylated F and nonglycosylated N proteins are closely located in the trans-Golgi, suggesting their interaction in that compartment. Brefeldin A compromised the trafficking of HRSV F and N proteins and inclusion body sizes, indicating that the Golgi is important for both glycosylated and nonglycosylated HRSV protein traffic. HRSV N and M proteins colocalized and interacted with sorting nexin 2 (SNX2), a retromer component that shapes endosomes in tubular structures. Glycosylated F and nonglycosylated N HRSV proteins are detected in SNX2-laden aggregates with intracellular filaments projecting from their outer surfaces, and VPS26, another retromer component, was also found in inclusion bodies and filament-shaped structures. Similar to SNX2, TGN46 also colocalized with HRSV M and N proteins in filamentous structures at the plasma membrane. Cell fractionation showed enrichment of SNX2 in fractions containing HRSV M and N proteins. Silencing of SNX1 and 2 was associated with reduction in viral proteins, HRSV inclusion body size, syncytium formation, and progeny production. The results indicate that HRSV structural proteins M and N are in the secretory pathway, and SNX2 plays an important role in the traffic of HRSV structural proteins toward assembly sites.IMPORTANCE The present study contributes new knowledge to understand HRSV assembly by providing evidence that nonglycosylated structural proteins M and N interact with elements of the secretory pathway, shedding light on their intracellular traffic. To the best of our knowledge, the present contribution is important given the scarcity of studies about the traffic of HRSV nonglycosylated proteins, especially by pointing to the involvement of SNX2, a retromer component, in the HRSV assembly process.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Interacciones Microbiota-Huesped , Proteínas de la Nucleocápside/metabolismo , Virus Sincitial Respiratorio Humano/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus , Precursor de Proteína beta-Amiloide/genética , Proteínas Portadoras , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Células HeLa , Humanos , Transporte de Proteínas
13.
Viruses ; 12(7)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708342

RESUMEN

Oropouche orthobunyavirus (OROV) is an emerging arbovirus with a high potential of dissemination in America. Little is known about the role of peripheral blood mononuclear cells (PBMC) response during OROV infection in humans. Thus, to evaluate human leukocytes susceptibility, permissiveness and immune response during OROV infection, we applied RNA hybridization, qRT-PCR and cell-based assays to quantify viral antigens, genome, antigenome and gene expression in different cells. First, we observed OROV replication in human leukocytes lineages as THP-1 monocytes, Jeko-1 B cells and Jurkat T cells. Interestingly, cell viability and viral particle detection are maintained in these cells, even after successive passages. PBMCs from healthy donors were susceptible but the infection was not productive, since neither antigenome nor infectious particle was found in the supernatant of infected PBMCs. In fact, only viral antigens and small quantities of OROV genome were detected at 24 hpi in lymphocytes, monocytes and CD11c+ cells. Finally, activation of the Interferon (IFN) response was essential to restrict OROV replication in human PBMCs. Increased expression of type I/III IFNs, ISGs and inflammatory cytokines was detected in the first 24 hpi and viral replication was re-established after blocking IFNAR or treating cells with glucocorticoid. Thus, in short, our results show OROV is able to infect and remain in low titers in human T cells, monocytes, DCs and B cells as a consequence of an effective IFN response after infection, indicating the possibility of leukocytes serving as a trojan horse in specific microenvironments during immunosuppression.


Asunto(s)
Infecciones por Bunyaviridae/metabolismo , Leucocitos Mononucleares/virología , Orthobunyavirus , ARN Viral/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Genoma Viral/genética , Humanos , Microscopía Confocal , Orthobunyavirus/genética , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Replicación Viral
14.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31915283

RESUMEN

The HIV-1 accessory protein Nef downregulates the cell surface expression of major histocompatibility complex class I (MHC-I) molecules to facilitate virus spreading. The Nef-induced downregulation of MHC-I molecules such as HLA-A requires the clathrin adaptor protein 1 (AP-1) complex. The cooperative interaction of Nef, AP-1, and the cytosolic tail (CT) of HLA-A leads to a redirection of HLA-A targeting from the trans-Golgi network (TGN) to lysosomes for degradation. Although the γ-adaptin subunit of AP-1 has two distinct isoforms (γ1 and γ2), which may form two AP-1 complex variants, so far, only the importance of AP-1γ1 in MHC-I downregulation by Nef has been investigated. Here, we report that the AP-1γ2 isoform also participates in this process. We found that AP-1γ2 forms a complex with Nef and HLA-A2_CT and that this interaction depends on the Y320 residue in HLA-A2_CT and Nef expression. Moreover, Nef targets AP-1γ1 and AP-1γ2 to different compartments in T cells, and the depletion of either AP-1 variant impairs the Nef-mediated reduction of total endogenous HLA-A levels and rescues HLA-A levels on the cell surface. Finally, immunofluorescence and immunoelectron microscopy analyses reveal that the depletion of γ2 in T cells compromises both the Nef-mediated retention of HLA-A molecules in the TGN and targeting to multivesicular bodies/late endosomes. Altogether, these results show that in addition to AP-1γ1, Nef also requires the AP-1γ2 variant for efficient MHC-I downregulation.IMPORTANCE HIV-1 Nef mediates evasion of the host immune system by inhibiting MHC-I surface presentation of viral antigens. To achieve this goal, Nef modifies the intracellular trafficking of MHC-I molecules in several ways. Despite being the subject of intense study, the molecular details underlying these modifications are not yet fully understood. Adaptor protein 1 (AP-1) plays an essential role in the Nef-mediated downregulation of MHC-I molecules such as HLA-A in different cell types. However, AP-1 has two functionally distinct variants composed of either γ1 or γ2 subunit isoforms. Because previous studies on the role of AP-1 in MHC-I downregulation by Nef focused on AP-1γ1, an important open question is the participation of AP-1γ2 in this process. Here, we show that AP-1γ2 is also essential for Nef-mediated depletion of surface HLA-A molecules in T cells. Our results indicate that Nef hijacks AP-1γ2 to modify HLA-A intracellular transport, redirecting these proteins to lysosomes for degradation.


Asunto(s)
Regulación hacia Abajo , Regulación de la Expresión Génica , Antígeno HLA-A2/metabolismo , Factor de Transcripción AP-1/metabolismo , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Subunidades gamma de Complejo de Proteína Adaptadora/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Endosomas/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/metabolismo , Microscopía Inmunoelectrónica , Transporte de Proteínas , Linfocitos T/inmunología , Linfocitos T/virología , Red trans-Golgi/metabolismo
15.
Sci Transl Med ; 11(492)2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092692

RESUMEN

Western, Eastern, and Venezuelan equine encephalitis viruses (WEEV, EEEV, and VEEV, respectively) are important mosquito-borne agents that pose public health and bioterrorism threats. Despite considerable advances in understanding alphavirus replication, there are currently no available effective vaccines or antiviral treatments against these highly lethal pathogens. To develop a potential countermeasure for viral encephalitis, we generated a trivalent, or three-component, EEV vaccine composed of virus-like particles (VLPs). Monovalent VLPs elicited neutralizing antibody responses and protected mice and nonhuman primates (NHPs) against homologous challenges, but they were not cross-protective. In contrast, NHPs immunized with trivalent VLPs were completely protected against aerosol challenge by each of these three EEVs. Passive transfer of IgG from immunized NHPs protected mice against aerosolized EEV challenge, demonstrating that the mechanism of protection was humoral. Because they are replication incompetent, these trivalent VLPs represent a potentially safe and effective vaccine that can protect against diverse encephalitis viruses.


Asunto(s)
Virus de la Encefalitis/inmunología , Encefalitis por Arbovirus/inmunología , Encefalitis por Arbovirus/prevención & control , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Encefalitis por Arbovirus/patología , Encefalitis por Arbovirus/virología , Inmunización , Inmunoglobulina G/inmunología , Macaca fascicularis , Ratones Endogámicos BALB C , Vacunas de Partículas Similares a Virus/ultraestructura
16.
Trends Microbiol ; 26(11): 889-891, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30287212

RESUMEN

Nef is a major pathogenic factor of human and simian immunodeficiency viruses that hijacks protein trafficking through physical interaction with vesicle coats. This alters the subcellular localization of proteins involved in immunity and neutralizes their function. Understanding the structural bases for these interactions could reveal new targets for antiviral intervention.


Asunto(s)
VIH-1 , Virus de la Inmunodeficiencia de los Simios , Antígeno 2 del Estroma de la Médula Ósea , Regulación hacia Abajo , Humanos , Factor de Transcripción AP-1 , Productos del Gen nef del Virus de la Inmunodeficiencia Humana
17.
Front Microbiol ; 9: 2411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364166

RESUMEN

Cells from all kingdoms of life can release membrane-enclosed vesicles to the extracellular milieu. These extracellular vesicles (EVs) may function as mediators of intercellular communication, allowing the transfer of biologically active molecules between cells and organisms. It has become clear that HIV particles and certain types of EVs, such as exosomes, share many similarities regarding morphology, composition, and biogenesis. This review presents a summary of the literature describing the intricate relationship between HIV and EVs biogenesis. Also, we discuss the latest progress toward understanding the mechanisms by which EVs influence HIV pathogenesis, as well as, how HIV modulates EVs composition in infected cells to facilitate viral spread.

18.
J Control Release ; 283: 151-162, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29864476

RESUMEN

Squamous cell carcinoma (SCC) is a malignant tumor in which epidermal growth factor receptor (EGFR) overexpression is associated with poor prognosis and malignancy. For SCC treatment, cetuximab, an anti-EGFR antibody, is administered in combination with a chemotherapeutic drug for improved efficacy. In this work, an EGFR-targeted immunoliposome loaded with 5-fluorouracil (5- FU) was developed to allow co-administration of the antibody and the chemotherapeutic agent and selective delivery to SCC cells. Topically applied iontophoresis and subcutaneous injections of the 5-FU-loaded immunoliposomes were employed in an SCC xenograft animal model to evaluate the influence of the administration route on therapeutic efficacy. In vitro, cellular uptake of cetuximab-immunoliposomes by EGFR-positive SCC cells was 3.5-fold greater than the uptake of control liposomes. Skin penetration studies showed that iontophoresis of immunoliposomes doubled the 5-FU penetration into the viable epidermis compared with the same treatment with control liposomes. In vivo, subcutaneous injection of immunoliposomes reduced tumor volume by >60% compared with the negative control and approximately 50% compared with the 5-FU solution and control liposome treatments. Interestingly, topical administration via iontophoresis improved tumor reduction by almost 2-fold compared with subcutaneous administration of 5-FU solution and control liposomes but was equally effective for the immunoliposome treatment. However, histological analysis showed that iontophoresis of immunoliposomes was more effective than subcutaneous injection in reducing cell proliferation, resulting in cells with less aggressive characteristics. In conclusion, topical administration of immunoliposomes containing 5-FU using iontophoresis is a promising strategy for SCC treatment.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Cetuximab/administración & dosificación , Receptores ErbB/antagonistas & inhibidores , Fluorouracilo/administración & dosificación , Iontoforesis , Neoplasias Cutáneas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Humanos , Inyecciones Subcutáneas , Liposomas , Ratones Desnudos , Absorción Cutánea , Neoplasias Cutáneas/patología , Porcinos , Resultado del Tratamiento
19.
Sci Rep ; 8(1): 9018, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899544

RESUMEN

Bats (Order: Chiroptera) harbor a high diversity of emerging pathogens presumably because their ability to fly and social behavior favor the maintenance, evolution, and dissemination of these pathogens. Until 2012, there was only one report of the presence of Hantavirus in bats. Historically, it was thought that these viruses were harbored primarily by rodent and insectivore small mammals. Recently, new species of hantaviruses have been identified in bats from Africa and Asia continents expanding the potential reservoirs and range of these viruses. To assess the potential of Neotropical bats as hosts for hantaviruses and its transmission dynamics in nature, we tested 53 bats for active hantaviral infection from specimens collected in Southeastern Brazil. Part of the hantaviral S segment was amplified from the frugivorous Carollia perspicillata and the common vampire bat Desmodus rotundus. DNA sequencing showed high similarity with the genome of Araraquara orthohantavirus (ARQV), which belongs to one of the more lethal hantavirus clades (Andes orthohantavirus). ARQV-like infection was detected in the blood, urine, and organs of D. rotundus. Therefore, we describe a systemic infection in Neotropical bats by a human pathogenic Hantavirus. We also propose here a schematic transmission dynamics of hantavirus in the study region. Our results give insights to new, under-appreciated questions that need to be addressed in future studies to clarify hantavirus transmission in nature and avoid hantavirus outbreaks.


Asunto(s)
Quirópteros/virología , Reservorios de Enfermedades/virología , Infecciones por Hantavirus/virología , Orthohantavirus/fisiología , Animales , Brasil , Quirópteros/sangre , Quirópteros/clasificación , Variación Genética , Geografía , Orthohantavirus/clasificación , Orthohantavirus/genética , Infecciones por Hantavirus/sangre , Infecciones por Hantavirus/transmisión , Interacciones Huésped-Patógeno , Humanos , Filogenia , Análisis de Secuencia de ADN
20.
PLoS Pathog ; 14(5): e1007047, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29723305

RESUMEN

Peribunyaviridae is a large family of RNA viruses with several members that cause mild to severe diseases in humans and livestock. Despite their importance in public heath very little is known about the host cell factors hijacked by these viruses to support assembly and cell egress. Here we show that assembly of Oropouche virus, a member of the genus Orthobunyavirus that causes a frequent arboviral infection in South America countries, involves budding of virus particles toward the lumen of Golgi cisternae. As viral replication progresses, these Golgi subcompartments become enlarged and physically separated from Golgi stacks, forming Oropouche viral factory (Vfs) units. At the ultrastructural level, these virally modified Golgi cisternae acquire an MVB appearance, and while they lack typical early and late endosome markers, they become enriched in endosomal complex required for transport (ESCRT) proteins that are involved in MVB biogenesis. Further microscopy and viral replication analysis showed that functional ESCRT machinery is required for efficient Vf morphogenesis and production of infectious OROV particles. Taken together, our results indicate that OROV attracts ESCRT machinery components to Golgi cisternae to mediate membrane remodeling events required for viral assembly and budding at these compartments. This represents an unprecedented mechanism of how viruses hijack host cell components for coordinated morphogenesis.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiología , Técnicas de Cultivo de Célula , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/virología , Células HeLa , Humanos , Orthobunyavirus/crecimiento & desarrollo , Orthobunyavirus/patogenicidad , Virión/metabolismo , Ensamble de Virus/fisiología , Liberación del Virus/fisiología , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...