Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(9): 14527-14538, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36098636

RESUMEN

Single-crystal Ni-rich Li[NixMnyCo1-x-y]O2 (SC-NMC) cathodes represent a promising approach to mitigate the cracking issue of conventional polycrystalline cathodes. However, many reported SC-NMC cathodes still suffer from unsatisfactory cycling stability, particularly under high charge cutoff voltage and/or elevated temperature. Herein, we report an ultraconformal and durable poly(3,4-ethylenedioxythiophene) (PEDOT) coating for SC-NMC cathodes using an oxidative chemical vapor deposition (oCVD) technique, which significantly improves their high-voltage (4.6 V) and high-temperature operation resiliency. The PEDOT coated SC LiNi0.83Mn0.1Co0.07O2 (SC-NMC83) delivers an impressive capacity retention rate of 96.7% and 89.5% after 100 and 200 cycles, respectively. Significantly, even after calendar aging at 45 °C and 4.6 V, the coated cathode can still retain 85.3% (in comparison with 59.6% for the bare one) of the initial capacity after 100 cycles at a 0.5 C rate. Synchrotron X-ray experiments and interface characterization collectively reveal that the conformal PEDOT coating not only effectively stabilizes the crystallographic structure and maintains the integrity of the particles but also significantly suppresses the electrolyte's corrosion, resulting in improved electrochemical/thermal stability. Our findings highlight the promise of an oCVD PEDOT coating for single-crystal Ni-rich cathodes to meet the grand challenge of high-energy batteries under extreme conditions.

2.
Angew Chem Int Ed Engl ; 61(27): e202203466, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35466514

RESUMEN

The commercialization of lithium-sulfur (Li-S) batteries is still hindered by the unsatisfactory cell performance under practical working conditions, which is mainly caused by the sluggish cathode redox kinetics, severe polysulfide shuttling, and poor Li stripping/plating reversibility. Herein, we report an effective strategy by combining Se-doped S hosted in an ordered macroporous framework with a highly fluorinated ether (HFE)-based electrolyte to simultaneously address the aforementioned issues in both cathode and anode. A reversible and stable high areal capacity of >5.4 mAh cm-2 with high Coulombic efficiency >99.2 % can be achieved under high areal Se/S loading (5.8 mg cm-2 ), while the underlying mechanism was further revealed through synchrotron X-ray probes and Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The practical application potential was further evaluated at low (0 °C) and high (55 °C) temperatures under high areal Se/S loading (>5.0 mg cm-2 ) and thin Li metal (40 µm).

3.
Nat Commun ; 13(1): 436, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087034

RESUMEN

High-voltage operation is essential for the energy and power densities of battery cathode materials, but its stabilization remains a universal challenge. To date, the degradation origin has been mostly attributed to cycling-initiated structural deformation while the effect of native crystallographic defects induced during the sophisticated synthesis process has been significantly overlooked. Here, using in situ synchrotron X-ray probes and advanced transmission electron microscopy to probe the solid-state synthesis and charge/discharge process of sodium layered oxide cathodes, we reveal that quenching-induced native lattice strain plays an overwhelming role in the catastrophic capacity degradation of sodium layered cathodes, which runs counter to conventional perception-phase transition and cathode interfacial reactions. We observe that the spontaneous relaxation of native lattice strain is responsible for the structural earthquake (e.g., dislocation, stacking faults and fragmentation) of sodium layered cathodes during cycling, which is unexpectedly not regulated by the voltage window but is strongly coupled with charge/discharge temperature and rate. Our findings resolve the controversial understanding on the degradation origin of cathode materials and highlight the importance of eliminating intrinsic crystallographic defects to guarantee superior cycling stability at high voltages.

4.
Adv Mater ; 34(4): e2107326, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34699633

RESUMEN

The worldwide energy demand in electric vehicles and the increasing global temperature have called for development of high-energy and long-life lithium-ion batteries (LIBs) with improved high-temperature operational resiliency. However, current attention has been mostly focused on cycling aging at elevated temperature, leaving considerable gaps of knowledge in the failure mechanism, and practical control of abusive calendar aging and thermal runaway that are highly related to the eventual operational lifetime and safety performance of LIBs. Herein, using a combination of various in situ synchrotron X-ray and electron microscopy techniques, a multiscale understanding of surface structure effects involved in regulating the high-temperature operational tolerance of polycrystalline Ni-rich layered cathodes is reported. The results collectively show that an ultraconformal poly(3,4-ethylenedioxythiophene) coating can effectively prevent a LiNi0.8 Co0.1 Mn0.1 O2 cathode from undergoing undesired phase transformation and transition metal dissolution on the surface, atomic displacement, and dislocations within primary particles, intergranular cracking along the grain boundaries within secondary particles, and intensive bulk oxygen release during high state-of-charge and high-temperature aging. The present work highlights the essential role of surface structure controls in overcoming the multiscale degradation pathways of high-energy battery materials at extreme temperature.

5.
Nano Lett ; 20(5): 3844-3851, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32283937

RESUMEN

The further improvement of sodium ion batteries requires the elucidation of the mechanisms pertaining to reversibility, which allows the novel design of the electrode structure. Here, through a hydrogel-embedding method, we are able to confine the growth of few-layer SnS2 nanosheets between a nitrogen- and sulfur-doped carbon nanotube (NS-CNT) and amorphous carbon. The obtained carbon-sandwiched SnS2 nanosheets demonstrate excellent sodium storage properties. In operando small-angle X-ray scattering combined with the ex situ X-ray absorption near edge spectra reveal that the redox reactions between SnS2/NS-CNT and the sodium ion are highly reversible. On the contrary, the nanostructure evolution is found to be irreversible, in which the SnS2 nanosheets collapse, followed by the regeneration of SnS2 nanoparticles. This work provides operando insights into the chemical environment evolution and structure change of SnS2-based anodes, elucidating its reversible reaction mechanism, and illustrates the significance of engineered carbon support in ensuring the electrode structure stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...