Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1268176, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901839

RESUMEN

The purpose of this study was to evaluate the treatment potential of a human-derived demineralized scaffold, Spongioflex® (SPX), in partial meniscal lesions by employing in vitro models. In the first step, the differentiation potential of human meniscal cells (MCs) was investigated. In the next step, the ability of SPX to accommodate and support the adherence and/or growth of MCs while maintaining their fibroblastic/chondrocytic properties was studied. Control scaffolds, including bovine collagen meniscus implant (CMI) and human meniscus allograft (M-Allo), were used for comparison purposes. In addition, the migration tendency of MCs from fresh donor meniscal tissue into SPX was investigated in an ex vivo model. The results showed that MCs cultured in osteogenic medium did not differentiate into osteogenic cells or form significant calcium phosphate deposits, although AP activity was relatively increased in these cells. Culturing cells on the scaffolds revealed increased viability on SPX compared to the other scaffold materials. Collagen I synthesis, assessed by ELISA, was similar in cells cultured in 2D and on SPX. MCs on micro-porous SPX (weight >0.5 g/cm3) exhibited increased osteogenic differentiation indicated by upregulated expression of ALP and RUNX2, while also showing upregulated expression of the chondrogen-specific SOX9 and ACAN genes. Ingrowth of cells on SPX was observed after 28 days of cultivation. Overall, the results suggest that SPX could be a promising biocompatible scaffold for meniscal regeneration.

2.
Pharmaceutics ; 13(10)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34683917

RESUMEN

In this study we looked for the main protein pathway regulators which were responsible for the therapeutic impact on colon cancers when combining magnetic hyperthermia with the chemotherapeutic agent 5-fluorouracil (5FU). To this end, chitosan-coated magnetic nanoparticles (MNP) functionalized with 5FU were intratumorally injected into subcutaneous human colon cancer xenografts (HT-29) in mice and exposed to an alternating magnetic field. A decreased tumor growth was found particularly for the combined thermo-chemotherapy vs. the corresponding monotherapies. By using computational analysis of the tumor proteome, we found upregulated functional pathway categories termed "cellular stress and injury", "intracellular second messenger and nuclear receptor signaling", "immune responses", and "growth proliferation and development". We predict TGF-beta, and other mediators, as important upstream regulators. In conclusion, our findings show that the combined thermo-chemotherapy induces thrombogenic collagen fibers which are able to impair tumor nutrient supply. Further on, we associate several responses to the recognition of damage associated molecular patterns (DAMPs) by phagocytic cells, which immigrate into the tumor area. The activation of some pathways associated with cell survival implies the necessity to conduct multiple therapy sessions in connection with a corresponding monitoring, which could possibly be performed on the base of the identified protein regulators.

3.
Cancers (Basel) ; 12(9)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32916798

RESUMEN

Magnetic nanoparticles (MNPs) have shown promising features to be utilized in combinatorial magnetic hyperthermia and chemotherapy. Here, we assessed if a thermo-chemotherapeutic approach consisting of the intratumoral application of functionalized chitosan-coated MNPs (CS-MNPs) with 5-fluorouracil (5FU) and magnetic hyperthermia prospectively improves the treatment of colorectal cancer. With utilization of a human colorectal cancer (HT29) heterotopic tumor model in mice, we showed that the thermo-chemotherapeutic treatment is more efficient in inactivating colon cancer than either tumor treatments alone (i.e., magnetic hyperthermia vs. the presence of 5FU attached to MNPs). In particular, the thermo-chemotherapeutic treatment significantly (p < 0.01) impacts tumor volume and tumor cell proliferation (Ki67 expression, p < 0.001) compared to the single therapy modalities. The thermo-chemotherapeutic treatment: (a) affects DNA replication and repair as measured by H2AX and phosphorylated H2AX expression (p < 0.05 to 0.001), (b) it does not distinctly induce apoptosis nor necroptosis in target cells, since expression of p53, PARP cleaved-PARP, caspases and phosphorylated-RIP3 was non-conspicuous, (c) it renders tumor cells surviving therapy more sensitive to further therapy sessions as indicated by an increased expression of p53, reduced expression of NF-κB and HSPs, albeit by tendency with p > 0.05), and (d) that it impacts tumor vascularity (reduced expression of CD31 and αvß3 integrin (p < 0.01 to 0.001) and consequently nutrient supply to tumors. We further hypothesize that tumor cells die, at least in parts, via a ROS dependent mechanism called oxeiptosis. Taken together, a very effective elimination of colon cancers seems to be feasible by utilization of repeated thermo-chemotherapeutic therapy sessions in the long-term.

4.
Materials (Basel) ; 13(7)2020 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-32252307

RESUMEN

Magnetic nanoparticles (MNPs) are prone to exhibit physicochemical changes caused by their interaction with biological solutions. However, such interactions have been less considered in cancer therapy studies. The behavior of four iron oxide MNP formulations with different surface coatings, namely, chitosan (CS), polyvinyl alcohol (PVA), carboxymethyldextran (CMX), and polydimethylamine (PEA), was investigated, after their exposure to four different cell culture media (DMEM/F12 and MEM, among others) and six different cancer cell lines (HT29, HT1080, T24, MDA-MB-231, BxPC-3, and LS174T). The sedimentation (Vs) and diffusion (Vd) velocities of MNPs in different culture media were calculated. Atomic absorption spectroscopy (AAS) and dynamic light scattering (DLS) were used to quantify cell uptake efficiency and physicochemical properties, respectively. Apart from PVA-coated MNPs, CMX-, CS-, and PEA-coated MNPs clustered and increased notably in size when dispensed in culture media. The different MNP formulations led either to a low (PVA-coated MNPs), medium (CS- and CMX-coated MNPs), or high (PEA-coated MNPs) clustering in the different culture media. Clustering correlated with the Vs and Vd of the MNPs and their subsequent interaction with cells. In particular, the CMX-coated MNPs with higher Vs and lower Vd internalized more readily than the PVA-coated MNPs into the different cell lines. Hence, our results highlight key considerations to include when validating nanoparticles for future biomedical applications.

5.
Genet Test Mol Biomarkers ; 20(9): 516-21, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27382961

RESUMEN

BACKGROUND: Multidrug resistance is one of the major causes of treatment failure in pediatric acute lymphoblastic leukemia (ALL), and SORCIN is an intracellular calcium modulator protein. The current study was designed to investigate the in vitro and in vivo relationships between the expression levels of SORCIN: in tumor cell lines and children with ALL; its possible correlation with MDR1/P-glycoprotein (P-gp), a multidrug resistance-related gene; and response to therapy. MATERIALS AND METHODS: Childhood T-lymphoblastic leukemia (CCRF-CEM) cell lines resistant to methotrexate (MTX) were developed. Patient studies were performed by including 30 children with ALL at diagnosis, 3 children with bone marrow relapse, and 15 children with no symptoms of cancer. The mRNA expression profiles of SORCIN and MDR1/P-gp was assessed using quantitative polymerase chain reaction (qPCR). Minimal residual disease (MRD) was measured in the patient population, a year following the initial therapy using qPCR. RESULTS: Cell line data analyses showed a positive correlation between SORCIN mRNA levels and resistance to MTX. The difference between patient and control groups for SORCIN expression levels was not significant. However, patients with a negative response to therapy showed an increase in SORCIN mRNA levels (up to 6.8-fold) compared with those with negative MRD. In addition, the results demonstrated a significant positive correlation between SORCIN and MDR1/P-gp gene expression levels. CONCLUSION: The current study introduces, for the first time, a possible prognostic value of SORCIN in childhood ALL, which may be correlated with MDR1/P-gp gene expression in these patients.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Proteínas de Unión al Calcio/biosíntesis , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/biosíntesis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Adolescente , Biomarcadores Farmacológicos/sangre , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Proteínas de Unión al Calcio/sangre , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Niño , Preescolar , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos/genética , Femenino , Expresión Génica , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba
6.
Biomed Rep ; 3(3): 371-374, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26137238

RESUMEN

BAALC is a novel molecular marker in leukemia that is highly expressed in patients with acute leukemia. Increased expression levels of BAALC are known as poor prognostic factors in adult acute myeloid and lymphoid leukemia. The purpose of the present study was to evaluate the prognostic significance of the BAALC gene expression levels in pediatric acute lymphoblastic leukemia (ALL) and its association with MDR1. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the mRNA expression levels of BAALC and MRD1 were measured in bone marrow samples of 28 new diagnosed childhood ALL patients and 13 children without cancer. Minimal residual disease (MRD) was measured one year after the initiation of the chemotherapy using the RT-qPCR method. The high level expression of BAALC had a significant association with the pre-B-ALL subtype, leukocytosis and positive MRD after one year of treatment in leukemic patients. In addition, a positive correlation between BAALC and MDR1 mRNA expression was shown in this group. In conclusion, to the best of our knowledge, the increase of BAALC expression as a poor prognostic factor for childhood ALL is shown for the first time. Additionally, the correlation between BAALC and MDR1 in mRNA expression levels can aid for an improved understanding of the mechanism through which BAALC may function in ALL and multidrug resistance.

7.
Pharmacol Rep ; 67(2): 370-5, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25712666

RESUMEN

BACKGROUND: Neuroinflammation is considered to be a major factor in several neurodegenerative diseases. Recently, the polyunsaturated fatty acid omega-3 has been shown to have anti-inflammatory effects and might play an effective role in improving memory impairment due to inflammation. In order to test this, we stimulated neuroinflammation in an animal model and induced memory dysfunction as measured by reduced retention of passive avoidance learning (PAL) and altered expression of CaMKII-α, a gene known to be crucial for memory formation. We then investigated whether treatment with dietary omega-3 prevents inflammation-induced memory dysfunction in this model. METHODS: Male wistar rats (200-220 g) were fed either a control diet or a diet containing omega-3 (400mg/kg, po) for 1 month prior. Rats then received injection of either saline or LPS (500 µg/kg, ip) and were subjected to the PAL acquisition task. The retention test was performed 24h later, and animals were sacrificed immediately. Hippocampi were dissected and stored at -80°C. Finally, TNF-α levels and CaMKII-α gene expression were measured by ELISA and qRT-PCR, respectively. RESULTS: We found that LPS treatment significantly impaired PAL and memory, increased TNF-α levels and impaired CaMKII-α gene expression. In control and LPS-injected animals, pre-treatment with omega-3 improved performance on the PAL task and increased CAMKII-α gene expression. CONCLUSION: Taken together, these data suggest that dietary omega-3 may improve cognitive function and provide a potential therapy for memory impairment due to neuroinflammation.


Asunto(s)
Reacción de Prevención/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Ácidos Grasos Omega-3/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Trastornos de la Memoria/prevención & control , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/biosíntesis , Dieta , Expresión Génica/efectos de los fármacos , Lipopolisacáridos/farmacología , Masculino , Trastornos de la Memoria/inducido químicamente , Ratas , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA