Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nature ; 616(7957): 553-562, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37055640

RESUMEN

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas , ADN Tumoral Circulante , Neoplasias Pulmonares , Mutación , Metástasis de la Neoplasia , Carcinoma Pulmonar de Células Pequeñas , Humanos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Estudios de Cohortes , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Filogenia , Carcinoma Pulmonar de Células Pequeñas/patología , Biopsia Líquida
2.
J Mol Diagn ; 25(5): 295-310, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944408

RESUMEN

Patient selection for synthetic lethal-based cancer therapy may be improved by assessment of gene-specific loss of heterozygosity (LOH) and biallelic loss of function (LOF). This report describes SyNthetic lethal Interactions for Precision Diagnostics (SNiPDx), a targeted next-generation sequencing (NGS) panel for detection of LOH and biallelic LOF alterations in 26 target genes focused on DNA damage response pathways, in tumor-only formalin-fixed, paraffin-embedded (FFPE) samples. NGS was performed across all exons of these 26 genes and encompassed a total of 7632 genome-wide single-nucleotide polymorphisms on genomic DNA from 80 FFPE solid tumor samples. The Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing algorithm was optimized to assess tumor purity and copy number based on heterozygous single-nucleotide polymorphisms. SNiPDx demonstrated high sensitivity (95%) and specificity (91%) for LOH detection compared with whole genome sequencing. Positive agreement with local NGS-based testing in the detection of genetic alterations was 95%. SNiPDx detected 93% of biallelic ATM LOF mutations, 100% of ATM single-nucleotide variants and small insertions/deletions, and 100% of all ATM LOH status events identified by orthogonal NGS-based testing. SNiPDx is a novel, clinically feasible test for analysis of allelic status in FFPE tumor samples, which demonstrated high accuracy when compared with other NGS-based approaches in clinical use.


Asunto(s)
Neoplasias , Humanos , Adhesión en Parafina , Neoplasias/genética , Neoplasias/diagnóstico , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento , Formaldehído , Reparación del ADN
3.
Acad Pathol ; 6: 2374289519848353, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31206012

RESUMEN

Molecular profiling of glioblastoma has revealed complex cytogenetic, epigenetic, and molecular abnormalities that are necessary for diagnosis, prognosis, and treatment. Our neuro-oncology group has developed a data-driven, institutional consensus guideline for efficient and optimal workup of glioblastomas based on our routine performance of molecular testing. We describe our institution's testing algorithm, assay development, and genetic findings in glioblastoma, to illustrate current practices and challenges in neuropathology related to molecular and genetic testing. We have found that coordination of test requisition, tissue handling, and incorporation of results into the final pathologic diagnosis by the neuropathologist improve patient care. Here, we present analysis of O6-methylguanine-DNA-methyltransferase promoter methylation and next-generation sequencing results of 189 patients, obtained utilizing our internal processes led by the neuropathology team. Our institutional pathway for neuropathologist-driven molecular testing has streamlined the management of glioblastoma samples for efficient return of results for incorporation of genomic data into the pathological diagnosis and optimal patient care.

4.
Cancer Genet ; 228-229: 55-63, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30553474

RESUMEN

One caveat of next-generation sequencing (NGS)-based clinical oncology testing is the high amount of input DNA required. We sought to develop a focused NGS panel that could capture hotspot regions in relevant genes requiring 0.5-10 ng input DNA. The resulting Penn Precision Panel (PPP) targeted 20 genes containing clinically significant variants relevant to many cancers. One hundred twenty-three samples were analyzed, including 83 solid tumor specimens derived from FFPE. Various input quantities of DNA (0.5-10 ng) were amplified with content-specific PCR primer pools, then sequenced on a MiSeq instrument (Illumina, Inc.) via paired-end, 2 × 186 base pair reads to an average read depth of greater than 6500x. Variants were detected using an in-house analysis pipeline. Clinical sensitivity and specificity were assessed using results from our previously validated solid tumor NGS panel; sensitivity of the PPP is 96.75% (387/400 variants) and specificity is 99.9% (8427/8428 base pairs). Variant allele frequencies (VAFs) are highly concordant across both assays (r = 0.98 p < 0.0001). The PPP is a robust, clinically validated test optimized for low-yield solid tumor specimens, capturing a high percentage of clinically relevant variants found by larger commercially available NGS panels while using only 0.5-10 ng of input DNA.


Asunto(s)
ADN de Neoplasias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ADN de Neoplasias/análisis , Humanos , Límite de Detección
5.
Leuk Res ; 65: 67-73, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29310020

RESUMEN

The National Comprehensive Cancer Network (NCCN) defines the following types of acute myeloid leukemia (AML) as favorable-risk: acute promyelocytic leukemia with t(15;17) (APL); AML with core-binding factor (CBF) rearrangements, including t(8;21) and inv(16) or t(16;16) without mutations in KIT (CBF-KITwt); and AML with normal cytogenetics and mutations in NPM1 (NPM1mut); or biallelic mutations in CEBPA (CEBPAmut/mut), without FLT3-ITD. Although these AMLs are categorized as favorable risk by NCCN, clinical experience suggests that there are differences in clinical outcome amongst these cytogenetically and molecularly distinct leukemias. This study compared clinical and genotypic characteristics of 60 patients with favorable-risk AML, excluding APL, and demonstrated significant differences between them. Patients with NPM1mut AML were significantly older than those in the other groups. Targeted next-generation sequencing on DNA from peripheral blood or bone marrow revealed significantly more mutations in NPM1mut AML than the other favorable-risk diseases, especially in genes related to DNA splicing and methylation. CEBPAmut/mut AMLs exhibited more mutations in transcription-related genes. Patients with NPM1mut AML and CEBPAmut/mut AML show significantly reduced overall survival in comparison with CBF-KITwt AML. These findings emphasize that favorable-risk AML patients have divergent outcomes and that differences in clinical and genotypic characteristics should be considered in their evaluation and management.


Asunto(s)
Genotipo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Adulto , Factores de Edad , Anciano , Proteínas Potenciadoras de Unión a CCAAT/genética , Factores de Unión al Sitio Principal/genética , Femenino , Orden Génico , Humanos , Estimación de Kaplan-Meier , Cariotipificación , Leucemia Mieloide Aguda/clasificación , Leucemia Mieloide Aguda/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Mutación , Proteínas Nucleares/genética , Nucleofosmina , Pronóstico , Proteínas Proto-Oncogénicas c-kit/genética , Estudios Retrospectivos , Medición de Riesgo , Resultado del Tratamiento
6.
Mol Genet Genomic Med ; 4(4): 395-406, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27468416

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) of surgically resected solid tumor samples has become integral to personalized medicine approaches for cancer treatment and monitoring. Liquid biopsies, or the enrichment and characterization of circulating tumor cells (CTCs) from blood, can provide noninvasive detection of evolving tumor mutations to improve cancer patient care. However, the application of solid tumor NGS approaches to circulating tumor samples has been hampered by the low-input DNA available from rare CTCs. Moreover, whole genome amplification (WGA) approaches used to generate sufficient input DNA are often incompatible with blood collection tube preservatives used to facilitate clinical sample batching. METHODS: To address this, we have developed a novel approach combining tumor cell isolation from preserved blood with Repli-G WGA and Illumina TruSeq Amplicon Cancer Panel-based NGS. We purified cell pools ranging from 10 to 1000 cells from three different cell lines, and quantitatively demonstrate comparable quality of DNA extracted from preserved versus unpreserved samples. RESULTS: Preservation and WGA were compatible with the generation of high-quality libraries. Known point mutations and gene amplification were detected for libraries that had been prepared from amplified DNA from preserved blood. CONCLUSION: These spiking experiments provide proof of concept of a clinically applicable workflow for real-time monitoring of patient tumor using noninvasive liquid biopsies.

7.
PLoS One ; 11(4): e0152851, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27043212

RESUMEN

Next-generation sequencing (NGS) is a powerful platform for identifying cancer mutations. Routine clinical adoption of NGS requires optimized quality control metrics to ensure accurate results. To assess the robustness of our clinical NGS pipeline, we analyzed the results of 304 solid tumor and hematologic malignancy specimens tested simultaneously by NGS and one or more targeted single-gene tests (EGFR, KRAS, BRAF, NPM1, FLT3, and JAK2). For samples that passed our validated tumor percentage and DNA quality and quantity thresholds, there was perfect concordance between NGS and targeted single-gene tests with the exception of two FLT3 internal tandem duplications that fell below the stringent pre-established reporting threshold but were readily detected by manual inspection. In addition, NGS identified clinically significant mutations not covered by single-gene tests. These findings confirm NGS as a reliable platform for routine clinical use when appropriate quality control metrics, such as tumor percentage and DNA quality cutoffs, are in place. Based on our findings, we suggest a simple workflow that should facilitate adoption of clinical oncologic NGS services at other institutions.


Asunto(s)
Pruebas Genéticas , Genómica , Mutación , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores de Tumor/genética , Biología Computacional/métodos , Pruebas Genéticas/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Nucleofosmina
8.
PLoS One ; 11(4): e0153016, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27050425

RESUMEN

BACKGROUND: Although cytogenetics-based prognostication systems are well described in acute myeloid leukemia (AML), overall survival (OS) remains highly variable within risk groups. An integrated genetic prognostic (IGP) model using cytogenetics plus mutations in nine genes was recently proposed for patients ≤60 years to improve classification. This model has not been validated in clinical practice. METHODS AND FINDINGS: We retrospectively studied 197 patients with newly diagnosed de novo AML. We compared OS curves among the mutational profiles defined by the IGP model. The IGP model assigned patients with intermediate cytogenetics as having favorable, intermediate or unfavorable mutational profiles. The IGP model reassigned 50 of 137 patients with intermediate cytogenetics to favorable or unfavorable mutational profiles. Median OS was 2.8 years among 14 patients with intermediate cytogenetics and favorable mutational profiles (mutant NPM1 and mutant IDH1 or IDH2) and 1.3 years among patients with intermediate mutational profiles. Among patients with intermediate cytogenetics labeled as having unfavorable mutational profiles, median OS was 0.8 years among 24 patients with FLT3-ITD positive AML and high-risk genetic changes (trisomy 8, TET2 and/or DNMT3A) and 1.7 years among 12 patients with FLT3-ITD negative AML and high-risk mutations (TET2, ASXL1 and/or PHF6). OS for patients with intermediate cytogenetics and favorable mutational profiles was similar to OS for patients with favorable cytogenetics (p = 0.697) and different from patients with intermediate cytogenetics and intermediate mutational profiles (p = 0.028). OS among patients with FLT3-ITD positive AML and high-risk genetic changes was similar to patients with unfavorable cytogenetics (p = 0.793) and different from patients with intermediate IGP profile (p = 0.022). Patients with FLT3-ITD negative AML and high-risk mutations, defined as 'unfavorable' in the IGP model, had OS similar to patients with intermediate IGP profile (p = 0.919). CONCLUSIONS: The IGP model was not completely validated in our cohort. However, mutations in six out of the nine genes can be used to characterize survival (NPMI, IDH1, IDH2, FLT3-ITD, TET2, DNMT3A) and allow for more robust prognostication in the patients who are re-categorized by the IGP model. These mutations should be incorporated into clinical testing for younger patients outside of clinical trials, in order to guide therapy.


Asunto(s)
Predisposición Genética a la Enfermedad , Leucemia Mieloide Aguda/genética , Modelos Genéticos , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nucleofosmina , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Adulto Joven
9.
Cancer Genet ; 207(6): 272-5, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25178945

RESUMEN

Testing for somatic mutations in tumor samples is becoming standard practice in a number of tumor types where targeted therapies are available. Since clinical care is dependent on the identification of the presence or absence of specific mutations, it is important that these mutations be identified consistently and accurately. Here we identify in a patient with metastatic melanoma a novel, complex mutation involving BRAF c.1798A>T (p.T599T), c.1799T>A (p.V600E), and c.1803A>T (p.K601N) that was identified by next generation sequencing but not by standard testing methods. The patient was started on a combination therapy inhibiting both BRAF and MEK, and demonstrated a dramatic clinical response. This case highlights the need for improved methods of mutation testing in tumor samples and exposes a pitfall in allele-specific testing methods that can be overcome using next generation sequencing.


Asunto(s)
Codón , Melanoma/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Análisis Mutacional de ADN , Femenino , Genómica , Humanos , Persona de Mediana Edad , Mutación , Medicina de Precisión
10.
J Pathol Inform ; 5(1): 29, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25250187

RESUMEN

BACKGROUND: At some institutions, including ours, bone marrow aspirate specimen triage is complex, with hematopathology triage decisions that need to be communicated to downstream ancillary testing laboratories and many specimen aliquot transfers that are handled outside of the laboratory information system (LIS). We developed a custom integrated database with dashboards to facilitate and streamline this workflow. METHODS: We developed user-specific dashboards that allow entry of specimen information by technologists in the hematology laboratory, have custom scripting to present relevant information for the hematopathology service and ancillary laboratories and allow communication of triage decisions from the hematopathology service to other laboratories. These dashboards are web-accessible on the local intranet and accessible from behind the hospital firewall on a computer or tablet. Secure user access and group rights ensure that relevant users can edit or access appropriate records. RESULTS: After database and dashboard design, two-stage beta-testing and user education was performed, with the first focusing on technologist specimen entry and the second on downstream users. Commonly encountered issues and user functionality requests were resolved with database and dashboard redesign. Final implementation occurred within 6 months of initial design; users report improved triage efficiency and reduced need for interlaboratory communications. CONCLUSIONS: We successfully developed and implemented a custom database with dashboards that facilitates and streamlines our hematopathology bone marrow aspirate triage. This provides an example of a possible solution to specimen communications and traffic that are outside the purview of a standard LIS.

11.
Am J Med Genet A ; 164A(7): 1765-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24677512

RESUMEN

We present the literature review of ring chromosome 7 and clinical, cytogenetic and fine molecular mapping of the first postnatal report of a male child with a non-supernumerary ring chromosome 7, r(7). The patient had dysmorphic features, developmental delay, dermatologic lesions with variable pigmentation, hypogenitalism, lumbar dextroscoliosis, cerebellar and ophthalmological abnormalities, and melanocytic congenital nevi. Cytogenetic analysis of peripheral blood and the nevus sample showed the presence of three different cell lines r(7), monosomy 7, and duplicated r(7) (idic r(7)), while findings on fibroblasts from both light and dark skin showed only mosaicism with r(7) and monosomy 7 cell lines in various proportions. FISH assay of the ring chromosome showed subtelomeric loss in both chromosome arms in all tissues studied. Analysis by genome-wide single-nucleotide polymorphism array showed a 0.8 Mb deletion in 7p22.3 (involving eight genes) and a 7.5 Mb deletion in 7q36 (involving 29 genes including some involved in genital and central nervous system development). The combination of results from our karyotypic and array analyses enabled us to establish an accurate genotype-phenotype relationship.


Asunto(s)
Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Análisis Citogenético , Mosaicismo , Fenotipo , Bandeo Cromosómico , Cromosomas Humanos Par 7/genética , Hibridación Genómica Comparativa , Estudios de Asociación Genética , Humanos , Hibridación Fluorescente in Situ , Lactante , Masculino , Cromosomas en Anillo
12.
Front Immunol ; 5: 10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24523721

RESUMEN

VH replacement (VHR) is a type of antibody gene rearrangement in which an upstream heavy chain variable gene segment (VH) invades a pre-existing rearrangement (VDJ). In this Hypothesis and Theory article, we begin by reviewing the mechanism of VHR, its developmental timing and its potential biological consequences. Then we explore the hypothesis that specific sequence motifs called footprints reflect VHR versus other processes. We provide a compilation of footprint sequences from different regions of the antibody heavy chain, and include data from the literature and from a high throughput sequencing experiment to evaluate the significance of footprint sequences. We conclude by discussing the difficulties of attributing footprints to VHR.

13.
Eur J Med Genet ; 55(5): 381-7, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22406087

RESUMEN

Ring Chromosome 20 syndrome is a rare chromosomal disorder characterized by refractory epilepsy, with seizures in wakefulness and sleep, behavioral problems and mild to severe cognitive impairment. Facial dysmorphism or other congenital malformations are rarely reported making it difficult to diagnose the syndrome based on clinical findings alone. Therefore, diagnosis requires cytogenetic testing. More than 100 cases have been published since the initial report in 1972. In some patients, the ring (20) is found in all cells analyzed and in these cases, the ring is almost always accompanied by deletions of 20pter and/or 20qter. However, in the majority of cases the ring is present in only a proportion of cells, with two normal 20's in the remaining cells (mosaicism), and in these cases, no deletions of chromosome 20 have been observed. Patients with supernumerary r(20) chromosomes have also been identified, but these individuals do not generally have seizures and are not discussed in this review. Characterization by fluorescence in situ hybridization and array-based analysis has shed insight into the molecular composition and possible mechanisms of ring formation, in both the mosaic and non-mosaic patients. The age of onset of seizures correlates with the percentage of cells with the ring in mosaic patients. While the underlying etiology of the phenotype is still not understood, evidence is accumulating which suggests the deletion of candidate genes on chromosome 20 is not responsible. Cytogenetic analysis, rather than chromosomal microarray analysis is recommended for diagnosis of this syndrome, as the mosaic cases do not have copy number alterations and are therefore not identified by array-based analysis.


Asunto(s)
Cromosomas Humanos Par 20 , Cromosomas en Anillo , Convulsiones/genética , Ondas Encefálicas , Humanos , Mosaicismo , Fenotipo , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Eliminación de Secuencia , Síndrome
14.
Cancer Genet ; 204(12): 654-65, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22285017

RESUMEN

Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease. The methods currently used for monitoring CLL and determining conditions for treatment are limited in their ability to predict disease progression, patient survival, and response to therapy. Although clonal diversity and the acquisition of new chromosomal abnormalities during the disease course (clonal evolution) have been associated with disease progression, their prognostic potential has been underappreciated because cytogenetic and fluorescence in situ hybridization (FISH) studies have a restricted ability to detect genomic abnormalities and clonal evolution. We hypothesized that whole genome analysis using high resolution single nucleotide polymorphism (SNP) microarrays would be useful to detect diversity and infer clonal evolution to offer prognostic information. In this study, we used the Infinium Omni1 BeadChip (Illumina, San Diego, CA) array for the analysis of genetic variation and percent mosaicism in 25 non-selected CLL patients to explore the prognostic value of the assessment of clonal diversity in patients with CLL. We calculated the percentage of mosaicism for each abnormality by applying a mathematical algorithm to the genotype frequency data and by manual determination using the Simulated DNA Copy Number (SiDCoN) tool, which was developed from a computer model of mosaicism. At least one genetic abnormality was identified in each case, and the SNP data was 98% concordant with FISH results. Clonal diversity, defined as the presence of two or more genetic abnormalities with differing percentages of mosaicism, was observed in 12 patients (48%), and the diversity correlated with the disease stage. Clonal diversity was present in most cases of advanced disease (Rai stages III and IV) or those with previous treatment, whereas 9 of 13 patients without detected clonal diversity were asymptomatic or clinically stable. In conclusion, SNP microarray studies with simultaneous evaluation of genomic alterations and mosaic distribution of clones can be used to assess apparent clonal evolution via analysis of clonal diversity. Since clonal evolution in CLL is strongly correlated with disease progression, whole genome SNP microarray analysis provides a new comprehensive and reliable prognostic tool for CLL patients.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/diagnóstico , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Femenino , Genotipo , Humanos , Hibridación Fluorescente in Situ , Leucemia Linfocítica Crónica de Células B/genética , Masculino , Persona de Mediana Edad , Mosaicismo , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA