Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microorganisms ; 11(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37317150

RESUMEN

Streptomyces albidoflavus J1074 is a popular platform to discover novel natural products via the expression of heterologous biosynthetic gene clusters (BGCs). There is keen interest in improving the ability of this platform to overexpress BGCs and, consequently, enable the purification of specialized metabolites. Mutations within gene rpoB for the ß-subunit of RNA polymerase are known to increase rifampicin resistance and augment the metabolic capabilities of streptomycetes. Yet, the effects of rpoB mutations on J1074 remained unstudied, and we decided to address this issue. A target collection of strains that we studied carried spontaneous rpoB mutations introduced in the background of the other drug resistance mutations. The antibiotic resistance spectra, growth, and specialized metabolism of the resulting mutants were interrogated using a set of microbiological and analytical approaches. We isolated 14 different rpoB mutants showing various degrees of rifampicin resistance; one of them (S433W) was isolated for the first time in actinomycetes. The rpoB mutations had a major effect on antibiotic production by J1074, as evident from bioassays and LC-MS data. Our data support the idea that rpoB mutations are useful tools to enhance the ability of J1074 to produce specialized metabolites.

2.
Folia Microbiol (Praha) ; 65(6): 1009-1015, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32676973

RESUMEN

Proteins MiaA and MiaB catalyze sequential isopentenylation and methylthiolation, respectively, of adenosine residue in 37th position of tRNAXXA. The mia mutations were recently shown by us to affect secondary metabolism and morphology of Streptomyces. However, it remained unknown as to whether both or one of the aforementioned modifications is critical for colony development and antibiotic production. Here, we addressed this issue through analysis of Streptomyces albus J1074 strains carrying double miaAmiaB knockout or extra copy of miaB gene. The double mutant differed from wild-type and miaA-minus strains in severity of morphological defects, growth dynamics, and secondary metabolism. Introduction of extra copy of miaB gene into miaA mutant restored aerial mycelium formation to the latter on certain solid media. Hence, miaB gene might be involved in tRNA thiomethylation in the absence of miaA; either MiaA- or MiaB-mediated modification appears to be enough to support normal metabolic and morphological processes in Streptomyces.


Asunto(s)
Pruebas Genéticas/métodos , Fenotipo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Transferasas Alquil y Aril/genética , Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Genes Bacterianos/genética , Peróxido de Hidrógeno/farmacología , Mutación , Metabolismo Secundario/efectos de los fármacos , Metabolismo Secundario/genética , Streptomyces/efectos de los fármacos , Streptomyces/crecimiento & desarrollo , Sulfurtransferasas/genética , Transcripción Genética
3.
Mol Microbiol ; 112(1): 249-265, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31017319

RESUMEN

Members of actinobacterial genus Streptomyces possess a sophisticated life cycle and are the deepest source of bioactive secondary metabolites. Although morphogenesis and secondary metabolism are subject to transcriptional co-regulation, streptomycetes employ an additional mechanism to initiate the aforementioned processes. This mechanism is based on delayed translation of rare leucyl codon UUA by the only cognate tRNALeu UAA (encoded by bldA). The bldA-based genetic switch is an extensively documented example of translational regulation in Streptomyces. Yet, after five decades since the discovery of bldA, factors that shape its function and peculiar conditionality remained elusive. Here we address the hypothesis that post-transcriptional tRNA modifications play a role in tRNA-based mechanisms of translational control in Streptomyces. Particularly, we studied two Streptomyces albus J1074 genes, XNR_1074 (miaA) and XNR_1078 (miaB), encoding tRNA (adenosine(37)-N6)-dimethylallyltransferase and tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase respectively. These enzymes produce, in a sequential manner, a hypermodified ms2 i6 A37 residue in most of the A36-A37-containing tRNAs. We show that miaB and especially miaA null mutant of S. albus possess altered morphogenesis and secondary metabolism. We provide genetic evidence that miaA deficiency impacts translational level of gene expression, most likely through impaired decoding of codons UXX and UUA in particular.


Asunto(s)
Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Streptomyces/genética , Proteínas Bacterianas/metabolismo , Codón/genética , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Leucina-ARNt Ligasa/metabolismo , Biosíntesis de Proteínas/genética , Proteómica , ARN Bacteriano/metabolismo , ARN de Transferencia de Leucina/genética , ARN de Transferencia de Leucina/metabolismo , Metabolismo Secundario/fisiología , Streptomyces/metabolismo , Sulfurtransferasas/metabolismo
4.
Microbiology (Reading) ; 165(2): 233-245, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30543507

RESUMEN

Streptomyces ghanaensis ATCC14672 is remarkable for its production of phosphoglycolipid compounds, moenomycins, which serve as a blueprint for the development of a novel class of antibiotics based on inhibition of peptidoglycan glycosyltransferases. Here we employed mariner transposon (Tn) mutagenesis to find new regulatory genes essential for moenomycin production. We generated a library of 3000 mutants which were screened for altered antibiotic activity. Our focus centred on a single mutant, HIM5, which accumulated lower amounts of moenomycin and was impaired in morphogenesis as compared to the parental strain. HIM5 carried the Tn insertion within gene ssfg_01967 for putative tRNA (N6-isopentenyl adenosine(37)-C2)-methylthiotransferase, or MiaB, and led to a reduced level of thiomethylation at position 37 in the anticodon of S. ghanaensis transfer ribonucleic acid (tRNA). It is likely that the mutant phenotype of HIM5 stems from the way in which ssfg_01967::Tn influences translation of the rare leucine codon UUA in several genes for moenomycin production and life cycle progression in S. ghanaensis. This is the first report showing that quantitative changes in tRNA modification status in Streptomyces have physiological consequences.


Asunto(s)
Antibacterianos/biosíntesis , Genes Bacterianos , Oligosacáridos/biosíntesis , ARN de Transferencia/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Mutagénesis Insercional , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Esporas Bacterianas , Streptomyces/fisiología , Sulfurtransferasas/genética , Sulfurtransferasas/metabolismo
5.
Arch Microbiol ; 199(8): 1175-1183, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28528473

RESUMEN

Streptomyces albus J1074 is one of the most popular and convenient hosts for heterologous expression of gene clusters directing the biosynthesis of various natural metabolic products, such as antibiotics. This fuels interest in elucidation of genetic mechanisms that may limit secondary metabolism in J1074. Here, we report the generation and initial study of J1074 mutant, deficient in gene bldA for tRNALeuUAA, the only tRNA capable of decoding rare leucyl TTA codon in Streptomyces. The bldA deletion in J1074 resulted in a highly conditional Bld phenotype, with depleted formation of aerial hyphae on certain solid media. In addition, bldA mutant of J1074 was unable to produce endogenous antibacterial compounds and two heterologous antibiotics, moenomycin and aranciamycin, whose biosynthesis is directed by TTA-containing genes. We have employed a new TTA codon-specific ß-galactosidase reporter system to provide genetic evidence that J1074 bldA mutant is impaired in translation of TTA. In addition, we have discussed the possible reasons for differences in the phenotypes of bldA mutants described here and in previous studies, providing knowledge to study bldA-based regulation of antibiotic biosynthesis.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , ARN Bacteriano/genética , ARN de Transferencia de Leucina/genética , Streptomyces/genética , Antraciclinas/metabolismo , Antibacterianos/biosíntesis , Eliminación de Gen , Familia de Multigenes/genética , Oligosacáridos/biosíntesis , Metabolismo Secundario , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
6.
World J Microbiol Biotechnol ; 31(8): 1297-301, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041369

RESUMEN

Analysis of the draft sequence of the genome of teicoplanin producer Actinoplanes teichomyceticus (NRRL-B16726) led to identification of several genes encoding AraC-family regulators that resemble AdpA, master regulator of transcription in Streptomyces. We elucidated possible regulatory functions of one of the identified genes, adpA19(at), most similar to archetypal adpA from model Streptomyces species, in a series of expression experiments. Introduction of adpA19 at under control of its own promoter on moderate copy number vector pKC1139 into NRRL-B16726 had no influence on antibiotic production and sporulation. Introduction of adpA19 at into Streptomyces coelicolor M145 and several S. ghanaensis strains had major influence on antibiotic production by these bacteria. Finally, adpA19 at expression in a set of soil actinomycete isolates led to induction of synthesis of antibiotic compounds. Our data point to pleiotropic regulatory role of adpA19(at), warranting its use as a tool to manipulate secondary metabolome of actinomycetes.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Genes Reguladores , Micromonosporaceae/genética , Streptomyces/genética , Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Simulación por Computador , Expresión Génica , Micromonosporaceae/metabolismo , Regiones Promotoras Genéticas , Streptomyces/metabolismo
7.
Folia Microbiol (Praha) ; 59(4): 355-60, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24526589

RESUMEN

The cell wall of the model actinomycete Streptomyces coelicolor M145 has recently been shown to contain the novel glycopolymer teichulosonic acid. The major building block of this polymer is 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (Kdn), suggesting initial clues about the genetic control of biosynthesis of this cell wall component. Here, through genome mining and gene knockouts, we demonstrate that the sco4879-sco4882 genomic region of S. coelicolor M145 is necessary for biosynthesis of teichulosonic acid. Specifically, mutants carrying individual knockouts of sco4879, sco4880 and sco4881 genes do not produce Kdn-containing glycopolymer and instead accumulate the minor cell wall component poly(diglycosyl 1-phosphate). Our studies provide evidence that this region is at least partly responsible for biosynthesis of Kdn, whereas flanking genes might control the other steps of teichulosonic acid formation.


Asunto(s)
Pared Celular/metabolismo , Polisacáridos Bacterianos/biosíntesis , Streptomyces coelicolor/metabolismo , Azúcares Ácidos/metabolismo , Pared Celular/genética , Clonación Molecular , ADN Bacteriano/genética , Minería de Datos , Espectroscopía de Resonancia Magnética , Mutagénesis Insercional , Streptomyces coelicolor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...