Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 42: 74-83, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067994

RESUMEN

Human space exploration expansion from Low-Earth Orbit to deep space is accelerating the need to monitor and address the known health concerns related to deep space radiation. The human musculoskeletal system is vulnerable to these risks (alongside microgravity) and its health reflects the well-being of other body systems. Multiparametric magnetic resonance imaging (MRI) is an important approach for assessing temporal physiological changes in the musculoskeletal system. We propose that ultra-low-field MRI provides an optimal low Size Weight and Power (SwaP) solution for non-invasively monitoring muscle and bone changes on the planned Gateway lunar space station. Our proposed ultra-low-field Gateway MRI meets low SWaP design specifications mandated by limited room in the lunar space station. This review summarizes the current state of our knowledge on musculoskeletal consequences of spaceflight, especially with respect to radiation, and then elaborates how MRI can be used to monitor the deleterious effects of space travel and the efficacy of putative countermeasures. We argue that an ultra-low-field MRI in cis-lunar space on the Gateway can provide valuable research and medical insights into the effects of deep space radiation exposure on astronauts. Such an MRI would also allow the development of imaging protocols that would facilitate Earth-bound teams to monitor space personnel musculoskeletal changes during future interplanetary spaceflight. It will especially have a role in monitoring countermeasures, such as the use of melanin, in protecting space explorers.


Asunto(s)
Imagen por Resonancia Magnética , Vuelo Espacial , Humanos , Imagen por Resonancia Magnética/métodos , Sistema Musculoesquelético/diagnóstico por imagen , Sistema Musculoesquelético/efectos de la radiación , Astronautas , Ingravidez , Radiación Cósmica/efectos adversos
2.
Methods Mol Biol ; 2813: 205-217, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38888780

RESUMEN

COVID-19 pandemic has heightened the interest toward diagnosis and treatment of infectious diseases. Nuclear medicine, with its powerful scintigraphic, single photon emission computer tomography (SPECT), and positron emission tomography (PET) imaging modalities, has always played an important role in diagnosis of infections and distinguishing them from the sterile inflammation. In addition to the clinically available radiopharmaceuticals, there has been a decades-long effort to develop more specific imaging agents with some examples being radiolabeled antibiotics and antimicrobial peptides for bacterial imaging, radiolabeled antifungals for fungal infections imaging, radiolabeled pathogen-specific antibodies, and molecular engineered constructs. In this chapter, we discuss some examples of the work published in the last decade on developing nuclear imaging agents for bacterial, fungal, and viral infections to generate more interest among nuclear medicine community toward conducting clinical trials of these novel probes, as well as toward developing novel radiotracers for imaging infections.


Asunto(s)
COVID-19 , Tomografía de Emisión de Positrones , Radiofármacos , Radiofármacos/química , Humanos , COVID-19/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , SARS-CoV-2 , Infecciones Bacterianas/diagnóstico por imagen , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/diagnóstico , Micosis/diagnóstico por imagen , Micosis/diagnóstico , Micosis/tratamiento farmacológico
3.
Nucl Med Biol ; 134-135: 108917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38718557

RESUMEN

BACKGROUND: Osteosarcoma (OS) is a prevalent primary bone cancer affecting both humans and canines. This study describes initial insights into the interaction of the human monoclonal antibody IF3 to an insulin-like growth factor 2 receptor (IGF2R) radiolabeled with either alpha-emitting Actinium-225 (225Ac) or beta-emitting Lutetium-177 (177Lu) radionuclides with the OS cells and tumor microenvironment (TME) in experimental human and canine OS. BASIC PROCEDURES: SCID mice bearing canine Gracie or human OS-33 OS tumors were treated with 177Lu- or 225Ac-labeled IF3 antibody, sacrificed at 24, 72 or 168 h post-treatment and their tumors were analyzed by immunohistochemistry (IHC) for the presence of OS cells, various elements of TME as well as for the double DNA strand breaks with γH2AX and caspase 3 assays. MAIN FINDINGS: IHC revealed a reduction in IGF2R-positive OS cells and OS stem cell populations post therapy with 225Ac- and 177Lu-labeled IF3 antibody. Notably, radiolabeled IF3 antibody effectively diminished pro-tumorigenic M2 macrophages, highlighting its therapeutic promise. The study also unveiled varied responses of natural killer (NK) cells and M1 macrophages, shedding light on the intricate TME interplay. Time-dependent increase in γ-H2AX staining in canine Gracie and human OS-33 tumors treated with [177Lu]Lu-IF3 and [225Ac]Ac-IF3 was observed at 24 and 72 h post-RIT. PRINCIPAL CONCLUSIONS: These findings suggest that radiolabeled antibodies offer a hopeful avenue for personalized OS treatment, emphasizing the importance of understanding their impact on the TME and potential synergies with immunotherapy.


Asunto(s)
Actinio , Lutecio , Osteosarcoma , Radioisótopos , Microambiente Tumoral , Animales , Perros , Humanos , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteosarcoma/diagnóstico por imagen , Ratones , Línea Celular Tumoral , Anticuerpos Monoclonales , Marcaje Isotópico , Neoplasias Óseas/metabolismo , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/patología , Neoplasias Óseas/inmunología
4.
J Immunol ; 212(11): 1647-1657, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578274

RESUMEN

Long-term therapeutic outcomes of multiple sclerosis (MS) remain hindered by the chronic nature of immune cell stimulation toward self-antigens. Development of novel methods to target and deplete autoreactive T lymphocytes remains an attractive target for therapeutics for MS. We developed a programmed cell death 1 (PD-1)-targeted radiolabeled mAb and assessed its ability to deplete activated PD-1+ T lymphocytes in vitro and its ability to reduce disease burden of the myelin oligodendrocyte glycoprotein 35-55 experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice. We also investigated the upregulation of PD-1 on infiltrating lymphocytes in an animal model of MS. Finally, we demonstrate the (to our knowledge) first reported positron-emission tomography/computed tomography imaging of activated PD-1+ cells in the EAE animal model of MS. We found that the 177Lu radioisotope-labeled anti-PD-1 mAb demonstrated significant in vitro cytotoxicity toward activated CD4+PD-1+ T lymphocytes and led to significant reduction in overall disease progression in the EAE animal model. Our results show high expression of PD-1 on infiltrating lymphocytes in the spinal cords of EAE diseased animals. Positron-emission tomography/computed tomography imaging of the anti-PD-1 mAb demonstrated significant uptake in the cervical draining lymph nodes highlighting accumulation of activated lymphocytes. Targeted depletion of T lymphocytes using T cell activation markers such as PD-1 may present a novel method to reduce autoimmune attack and inflammation in autoimmune diseases such as MS. Development of multimodal nuclear theranostic agents may present the opportunity to monitor T cell activation via imaging radioisotopes and simultaneously treat MS using therapeutic radioisotopes.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Activación de Linfocitos , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Ratones , Activación de Linfocitos/inmunología , Anticuerpos Monoclonales , Linfocitos T/inmunología , Femenino , Modelos Animales de Enfermedad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Humanos
5.
J Nucl Med ; 64(11): 1676-1682, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37770110

RESUMEN

The International Atomic Energy Agency organized a technical meeting at its headquarters in Vienna, Austria, in 2022 that included 17 experts representing 12 countries, whose research spanned the development and use of radiolabeled agents for imaging infection. The meeting focused largely on bacterial pathogens. The group discussed and evaluated the advantages and disadvantages of several radiopharmaceuticals, as well as the science driving various imaging approaches. The main objective was to understand why few infection-targeted radiotracers are used in clinical practice despite the urgent need to better characterize bacterial infections. This article summarizes the resulting consensus, at least among the included scientists and countries, on the current status of radiopharmaceutical development for infection imaging. Also included are opinions and recommendations regarding current research standards in this area. This and future International Atomic Energy Agency-sponsored collaborations will advance the goal of providing the medical community with innovative, practical tools for the specific image-based diagnosis of infection.


Asunto(s)
Infecciones Bacterianas , Radiofármacos , Humanos , Infecciones Bacterianas/diagnóstico por imagen
6.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570809

RESUMEN

Novel therapeutic approaches are much needed for the treatment of osteosarcoma. Targeted radionuclide therapy (TRT) and radioimmunotherapy (RIT) are promising approaches that deliver therapeutic radiation precisely to the tumor site. We have previously developed a fully human antibody, named IF3, that binds to insulin-like growth factor 2 receptor (IGF2R). IF3 was used in TRT to effectively inhibit tumor growth in osteosarcoma preclinical models. However, IF3's relatively short half-life in mice raised the need for improvement. We generated an Fc-engineered version of IF3, termed IF3δ, with amino acid substitutions known to enhance antibody half-life in human serum. In this study, we confirmed the specific binding of IF3δ to IGF2R with nanomolar affinity, similar to wild-type IF3. Additionally, IF3δ demonstrated binding to human and mouse neonatal Fc receptors (FcRn), indicating the potential for FcRn-mediated endocytosis and recycling. Biodistribution studies in mice showed a higher accumulation of IF3δ in the spleen and bone than wild-type IF3, likely attributed to abnormal spleen expression of IGF2R in mice. Therefore, the pharmacokinetics data from mouse xenograft models may not precisely reflect their behavior in canine and human patients. However, the findings suggest both IF3 and IF3δ as promising options for the RIT of osteosarcoma.


Asunto(s)
Osteosarcoma , Somatomedinas , Humanos , Ratones , Animales , Perros , Inmunoglobulina G , Distribución Tisular , Fragmentos Fc de Inmunoglobulinas/genética , Antígenos de Histocompatibilidad Clase I , Osteosarcoma/tratamiento farmacológico , Somatomedinas/metabolismo , Semivida
7.
Cancers (Basel) ; 15(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37568672

RESUMEN

Metastatic melanoma is a deadly disease that claims thousands of lives each year despite the introduction of several immunotherapeutic agents into the clinic over the past decade, inspiring the development of novel therapeutics and the exploration of combination therapies. Our investigations target melanin pigment with melanin-specific radiolabeled antibodies as a strategy to treat metastatic melanoma. In this study, a theranostic approach was applied by first labeling a chimeric antibody targeting melanin, c8C3, with the SPECT radionuclide 203Pb for microSPECT/CT imaging of C57Bl6 mice bearing B16-F10 melanoma tumors. Imaging was followed by radioimmunotherapy (RIT), whereby the c8C3 antibody is radiolabeled with a 212Pb/212Bi "in vivo generator", which emits cytotoxic alpha particles. Using microSPECT/CT, we collected sequential images of B16-F10 murine tumors to investigate antibody biodistribution. Treatment with the 212Pb/212Bi-labeled c8C3 antibody demonstrated a dose-response in tumor growth rate in the 5-10 µCi dose range when compared to the untreated and radiolabeled control antibody and a significant prolongation in survival. No hematologic or systemic toxicity of the treatment was observed. However, administration of higher doses resulted in a biphasic tumor dose response, with the efficacy of treatment decreasing when the administered doses exceeded 10 µCi. These results underline the need for more pre-clinical investigation of targeting melanin with 212Pb-labeled antibodies before the clinical utility of such an approach can be assessed.

8.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37513891

RESUMEN

BACKGROUND: Osteosarcoma (OS) represents the most common primary bone tumor in humans and in companion dogs, being practically phenotypically identical. There is a need for effective treatments to extend the survival of patients with OS. Here, we examine the dosimetry in beagle dogs and cross-reactivity with human tissues of a novel human antibody, IF3, that targets the insulin growth factor receptor type 2 (IGF2R), which is overexpressed on OS cells, making it a candidate for radioimmunotherapy of OS. METHODS: [89Zr]Zr-DFO-IF3 was injected into three healthy beagle dogs. PET/CT was conducted at 4, 24, 48, and 72 h. RAPID analysis was used to determine the dosimetry of [177Lu]Lu-CHXA"-IF3 for a clinical trial in companion dogs with OS. IF3 antibody was biotinylated, and a multitude of human tissues were assessed with immunohistochemistry. RESULTS: PET/CT revealed that only the liver, bone marrow, and adrenal glands had high uptake. Clearance was initially through renal and hepatobiliary excretion in the first 72 h followed by primarily physical decay. RAPID analysis showed bone marrow to be the dose-limiting organ with a therapeutic range for 177Lu calculated to be 0.487-0.583 GBq. Immunohistochemistry demonstrated the absence of IGF2R expression on the surface of healthy human cells, thus suggesting that radioimmunotherapy with [177Lu]Lu-CHXA"-IF3 will be well tolerated. CONCLUSIONS: Image-based dosimetry has defined a safe therapeutic range for canine clinical trials, while immunohistochemistry has suggested that the antibody will not cross-react with healthy human tissues.

9.
Int J Mol Sci ; 24(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37240433

RESUMEN

Targeted radionuclide therapy (TRT) has been burgeoning worldwide, with several radiopharmaceuticals for the treatment of metastatic cancers being approved for clinical use [...].


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Radiofármacos/uso terapéutico , Neoplasias Primarias Secundarias/tratamiento farmacológico , Radioisótopos/uso terapéutico
10.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36901805

RESUMEN

Implant infections caused by Staphylococcus aureus are difficult to treat due to biofilm formation, which complicates surgical and antibiotic treatment. We introduce an alternative approach using monoclonal antibodies (mAbs) targeting S. aureus and provide evidence of the specificity and biodistribution of S.-aureus-targeting antibodies in a mouse implant infection model. The monoclonal antibody 4497-IgG1 targeting wall teichoic acid in S. aureus was labeled with indium-111 using CHX-A"-DTPA as a chelator. Single Photon Emission Computed Tomography/computed tomographyscans were performed at 24, 72 and 120 h after administration of the 111In-4497 mAb in Balb/cAnNCrl mice with a subcutaneous implant that was pre-colonized with S. aureus biofilm. The biodistribution of this labelled antibody over various organs was visualized and quantified using SPECT/CT imaging, and was compared to the uptake at the target tissue with the implanted infection. Uptake of the 111In-4497 mAbs at the infected implant gradually increased from 8.34 %ID/cm3 at 24 h to 9.22 %ID/cm3 at 120 h. Uptake at the heart/blood pool decreased over time from 11.60 to 7.58 %ID/cm3, whereas the uptake in the other organs decreased from 7.26 to less than 4.66 %ID/cm3 at 120 h. The effective half-life of 111In-4497 mAbs was determined to be 59 h. In conclusion, 111In-4497 mAbs were found to specifically detect S. aureus and its biofilm with excellent and prolonged accumulation at the site of the colonized implant. Therefore, it has the potential to serve as a drug delivery system for the diagnostic and bactericidal treatment of biofilm.


Asunto(s)
Anticuerpos Monoclonales , Staphylococcus aureus , Animales , Ratones , Staphylococcus aureus/metabolismo , Distribución Tisular , Anticuerpos Monoclonales/uso terapéutico , Tomografía Computarizada de Emisión de Fotón Único/métodos , Quelantes
11.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768202

RESUMEN

Progress in prognostic factors, treatments, and outcome for both canine and human osteosarcoma (OS) has been minimal over the last three decades. Surface overexpression of the cation independent mannose-6-phosphate/insulin-like growth factor receptor type 2 (IGF2R) has been proven to occur in human OS cells. Subsequently, radioimmunotherapy (RIT) targeting IGF2R has demonstrated promising preliminary results. The main aims of this study were to investigate the expression of IGF2R in spontaneously occurring canine OS cells using immunohistochemistry (IHC) on archived biopsy samples and to assess its prognostic significance. Thirty-four dogs were included in the study. All cases showed that 80-100% of OS cells stained positive for IGF2R. IGF2R overexpression alone was not shown to have prognostic significance using both visual and quantitative methods of IHC staining intensity. This study has established for the first time the consistent expression of IGF2R in spontaneously occurring canine OS. This comparative oncology approach will allow further investigation into RIT as a novel treatment modality; first in canines and then in humans with OS. In addition, further studies should be performed to assess the true prognostic significance of IGF2R overexpression.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Perros , Humanos , Neoplasias Óseas/genética , Neoplasias Óseas/veterinaria , Neoplasias Óseas/metabolismo , Osteosarcoma/genética , Osteosarcoma/veterinaria , Osteosarcoma/metabolismo , Unión Proteica , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo
12.
Expert Rev Anti Infect Ther ; 21(4): 365-374, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36815406

RESUMEN

INTRODUCTION: Corona Virus Disease of 2019 (COVID-19) pandemic has renewed interest in monoclonal antibodies for treating infectious diseases. During last two decades experimental data has been accumulated showing the potential of radioimmunotherapy (RIT) of infectious diseases. In addition, COVID-19 pandemic has created a novel landscape for opportunistic fungal infections in post-COVID-19 patients resulting from severe immune suppression. AREAS COVERED: We analyze recent results on targeting "pan-antigens" shared by fungal pathogens in mouse models and in healthy dogs; on developing RIT of prosthetic joint infections (PJI); examine RIT as potential human immunodeficiency virus (HIV) cure strategy and analyze its mechanisms and safety. Literature review was performed using PubMed and Google Scholar and includes relevant articles from 2000 to 2022. EXPERT OPINION: Some of the RIT of infection applications can, hopefully, be moved into the clinic earlier than others after preclinical development: (1) RIT of opportunistic fungal infections might contribute to saving lives as current antifungal drugs do not work in severely immunocompromised patients; (2) RIT of patients with PJI. Success of RIT in these patients will allow to expand the application of RIT to other similarly vulnerable patients' populations such as cancer patients with weakened immune system and organ transplant recipients.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Micosis , Ratones , Humanos , Animales , Perros , Radioinmunoterapia/métodos , Pandemias , Enfermedades Transmisibles/terapia
13.
Access Microbiol ; 5(12)2023.
Artículo en Inglés | MEDLINE | ID: mdl-38188245

RESUMEN

Invasive fungal infections (IFIs) such as mucormycosis are causing devastating morbidity and mortality in immunocompromised patients as anti-fungal agents do not work in the setting of a suppressed immune system. The coronavirus disease 2019 (COVID-19) pandemic has created a novel landscape for IFIs in post-pandemic patients, resulting from severe immune suppression caused by COVID-19 infection, comorbidities (diabetes, obesity) and immunosuppressive treatments such as steroids. The antigen-antibody interaction has been employed in radioimmunotherapy (RIT) to deliver lethal doses of ionizing radiation emitted by radionuclides to targeted cells and has demonstrated efficacy in several cancers. One of the advantages of RIT is its independence of the immune status of a host, which is crucial for immunosuppressed post-COVID-19 patients. In the present work we targeted the fungal pan-antigens 1,3-beta-glucan and melanin pigment, which are present in the majority of pathogenic fungi, with RIT, thus making such targeting pathogen-agnostic. We demonstrated in experimental murine mucormycosis in immunocompetent and immunocompromised mice that lutetium-177 (177Lu)-labelled antibodies to these two antigens effectively decreased the fungal burden in major organs, including the brain. These results are encouraging because they show the effectiveness of pathogen-agnostic RIT in significantly decreasing fungal burden in vivo, while they can also potentially be applied to treat the broad range of invasive fungal infections that express the pan-antigens 1,3-beta-glucan or melanin.

14.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235126

RESUMEN

Objective: Positron emission tomography (PET) imaging is a powerful non-invasive method to determine the in vivo behavior of biomolecules. Determining biodistribution and pharmacokinetic (PK) properties of targeted therapeutics can enable a better understanding of in vivo drug mechanisms such as tumor uptake, off target accumulation and clearance. Zirconium-89 (89Zr) is a readily available tetravalent PET-enabling radiometal that has been used to evaluate the biodistribution and PK of monoclonal antibodies. In the current study, we performed in vitro and in vivo characterization of 89Zr-lintuzumab, a radiolabeled anti-CD33 antibody, as a model to evaluate the in vivo binding properties in preclinical models of AML. Methods: Lintuzumab was conjugated to p-SCN-Bn-deferoxamine (DFO) and labeled with 89Zr using a 5:1 µCi:µg specific activity at 37 °C for 1h. The biological activity of 89Zr-lintuzumab was evaluated in a panel of CD33 positive cells using flow cytometry. Fox Chase SCID mice were injected with 2 × 106 OCI-AML3 cells into the right flank. After 12 days, a cohort of mice (n = 4) were injected with 89Zr-lintuzumab via tail vein. PET/CT scans of mice were acquired on days 1, 2, 3 and 7 post 89Zr-lintuzumab injection. To demonstrate 89Zr-lintuzumab specific binding to CD33 expressing tumors in vivo, a blocking study was performed. This cohort of mice (n = 4) was injected with native lintuzumab and 24 h later 89Zr-lintuzumab was administered. This group was imaged 3 and 7 days after injection of 89Zr-lintuzumab. A full ex vivo biodistribution study on both cohorts was performed on day 7. The results from the PET image and ex vivo biodistribution studies were compared. Results: Lintuzumab was successfully radiolabeled with 89Zr resulting in a 99% radiochemical yield. The 89Zr-lintuzumab radioconjugate specifically binds CD33 positive cells in a similar manner to native lintuzumab as observed by flow cytometry. PET imaging revealed high accumulation of 89Zr-lintuzumab in OCI-AML3 tumors within 24h post-injection of the radioconjugate. The 89Zr-lintuzumab high tumor uptake remains for up to 7 days. Tumor analysis of the PET data using volume of interest (VOI) showed significant blocking of 89Zr-lintuzumab in the group pre-treated with native lintuzumab (pre-blocked group), thus indicating specific targeting of CD33 on OCI-AML3 cells in vivo. The tumor uptake findings from the PET imaging study are in agreement with those from the ex vivo biodistribution results. Conclusions: PET imaging of 89Zr-lintuzumab shows high specific uptake in CD33 positive human OCI-AML3 tumors. The results from the image study agree with the observations from the ex vivo biodistribution study. Our findings collectively suggest that PET imaging using 89Zr-lintuzumab could be a powerful drug development tool to evaluate binding properties of anti-CD33 monoclonal antibodies in preclinical cancer models.


Asunto(s)
Deferoxamina , Circonio , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Deferoxamina/química , Deferoxamina/farmacología , Humanos , Ratones , Ratones SCID , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Circonio/química
15.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076924

RESUMEN

Nearly 100,000 individuals are expected to be diagnosed with melanoma in the United States in 2022. Treatment options for late-stage metastatic disease up until the 2010s were few and offered only slight improvement to the overall survival. The introduction of B-RAF inhibitors and anti-CTLA4 and anti-PD-1/PD-L1 immunotherapies into standard of care brought measurable increases in the overall survival across all stages of melanoma. Despite the improvement in the survival statistics, patients treated with targeted therapies and immunotherapies are subject to very serious side effects, the development of drug resistance, and the high costs of treatment. This leaves room for the development of novel approaches as well as for the exploration of novel combination therapies for the treatment of metastatic melanoma. One such approach is targeting melanin pigment with radionuclide therapy. Advances in melanin-targeting radionuclide therapy of melanoma can be viewed from two spheres: (1) radioimmunotherapy (RIT) and (2) radiolabeled small molecules. The investigation of mechanisms of the action and efficacy of targeting melanin in melanoma treatment by RIT points to the involvement of the immune system such as complement dependent cytotoxicity. The combination of RIT with immunotherapy presents synergistic killing in mouse melanoma models. The field of radiolabeled small molecules is focused on radioiodinated compounds that have the ability to cross the cellular membranes to access intracellular melanin and can be applied in both therapy and imaging as theranostics. Clinical applications of targeting melanin with radionuclide therapies have produced encouraging results and clinical work is on-going. Continued work on targeting melanin with radionuclide therapy as a monotherapy, or possibly in combination with standard of care agents, has the potential to strengthen the current treatment options for melanoma patients.


Asunto(s)
Melaninas , Melanoma , Animales , Inmunoterapia , Melanoma/radioterapia , Ratones , Radioinmunoterapia/métodos , Radioisótopos/uso terapéutico
16.
Front Med (Lausanne) ; 9: 819702, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223918

RESUMEN

COVID-19 pandemic has heightened the interest toward diagnosis and treatment of infectious diseases. Nuclear medicine with its powerful scintigraphic, single photon emission computer tomography (SPECT) and positron emission tomography (PET) imaging modalities has always played an important role in diagnosis of infections and distinguishing them from the sterile inflammation. In addition to the clinically available radiopharmaceuticals there has been a decades-long effort to develop more specific imaging agents with some examples being radiolabeled antibiotics and antimicrobial peptides for bacterial imaging, radiolabeled anti-fungals for fungal infections imaging, radiolabeled pathogen-specific antibodies and molecular engineered constructs. In this opinion piece, we would like to discuss some examples of the work published in the last decade on developing nuclear imaging agents for bacterial, fungal, and viral infections in order to generate more interest among nuclear medicine community toward conducting clinical trials of these novel probes, as well as toward developing novel radiotracers for imaging infections.

17.
Elife ; 112022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34989676

RESUMEN

Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections. Here, we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. The mAbs were also shown to bind a collection of clinical isolates derived from different biofilm-associated infections (endocarditis, prosthetic joint, catheter). We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. Furthermore, we show that a mAb recognizing wall teichoic acid (clone 4497) specifically localizes to a subcutaneously implanted pre-colonized catheter in mice. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Biopelículas , Staphylococcus aureus/inmunología , Animales , Infecciones Relacionadas con Catéteres/inmunología , Infecciones Relacionadas con Catéteres/microbiología , Infecciones Relacionadas con Catéteres/terapia , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones Estafilocócicas/microbiología , Ácidos Teicoicos/inmunología , Ácidos Teicoicos/metabolismo
18.
J Radiol Prot ; 42(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35037901

RESUMEN

The field of radiation countermeasures is growing, however, currently there are no effective and non-toxic compounds which could be administered orally to the individuals post exposure to high doses of ionising radiation. The pigment melanin is ubiquitous through all kingdoms of life and provides selective advantage under radiation stress through its role as a chemical and physical shield, and its capacity to respond and react to exposures. Soluble allomelanin was administered to mice following whole-body exposure to lethal or sublethal doses of gamma radiation to determine its capacity to mitigate the effects of acute radiation syndrome, and its utility as a radiation countermeasure. Allomelanin has shown a trend to improve survival post an 8 Gy sublethal radiation exposure when administered up to 48 h post-irradiation. Furthermore, it improved median and overall survival to a 10 Gy lethal radiation exposure, specifically when administered at 24 h post-irradiation. Histological analysis on the jejunum region of the small intestine of this treatment group indicated that alterations of the mucosal and submucosal architecture, and disruption of the lymphatic system associated with lethal radiation exposure were mitigated when allomelanin was administered at 24 h post-irradiation. Based on this work soluble allomelanin derived from a fungal source could serve as an easily sourced, cost-effective, and viable countermeasure to accidental radiation exposure and merits further investigation.


Asunto(s)
Síndrome de Radiación Aguda , Melaninas , Animales , Rayos gamma , Ratones , Dosis de Radiación , Irradiación Corporal Total/efectos adversos
19.
Toxics ; 11(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36668739

RESUMEN

Radiation damage is associated with inflammation and immunity in the intestinal mucosa, including gut microbiota. Melanin has a unique capacity to coordinate a biological reaction in response to environmental stimuli, such as radiation exposure. Thus, melanin and melanized microbes have potential to be used for mitigation of injury induced by radiation. The purpose of the current study is to examine the safety of these agents for future targeting gut microbiome to prevent radiation-induced injury. We administered mice with soluble allomelanin and observed its effect on the intestinal physiology and body weight. We then established a melanized bacterial strain in probiotic E. coli Nissle. We measured the body weight of the mice treated with melanized E. coli Nissle. We showed the enhanced bacterial abundance and colonization of the melanized bacteria E. coli Nissle in the intestine. Melanized E. coli Nissle colonized the colon in less than 3 h and showed consistent colonization over 24 h post one oral gavage. We did not find significant changes of bodyweight in the mice treated with melanized bacteria. We did not observe any inflammation in the intestine. These results demonstrate the safety of soluble melanin and melanin-producing bacteria and will support the future studies to treat radiation-induced injuries and restore dysbiosis.

20.
Cancers (Basel) ; 13(9)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064450

RESUMEN

Etiological and genetic drivers of osteosarcoma (OS) are not well studied and vary from one tumor to another; making it challenging to pursue conventional targeted therapy. Recent studies have shown that cation independent mannose-6-phosphate/insulin-like growth factor-2 receptor (IGF2R) is consistently overexpressed in almost all of standard and patient-derived OS cell lines, making it an ideal therapeutic target for development of antibody-based drugs. Monoclonal antibodies, targeting IGF2R, can be conjugated with alpha- or beta-emitter radionuclides to deliver cytocidal doses of radiation to target IGF2R expression in OS. This approach known as radioimmunotherapy (RIT) can therefore be developed as a novel treatment for OS. In addition, OS is one of the common cancers in companion dogs and very closely resembles human OS in clinical presentation and molecular aberrations. In this study, we have developed human antibodies that cross-react with similar affinities to IGF2R proteins of human, canine and murine origin. We used naïve and synthetic antibody Fab-format phage display libraries to develop antibodies to a conserved region on IGF2R. The generated antibodies were radiolabeled and characterized in vitro and in vivo using human and canine OS patient-derived tumors in SCID mouse models. We demonstrate specific binding to IGF2R and tumor uptake in these models, as well as binding to tumor tissue of canine OS patients, making these antibodies suitable for further development of RIT for OS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...