Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
In Silico Pharmacol ; 12(1): 30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617709

RESUMEN

The hexokinase II enzyme is bound to the (VDAC1) channel in the form of a dimer and prevents the release of cell death factors from mitochondria to the cytoplasm. Studies have shown that blocking the binding of hexokinase II enzyme to (VDAC1) led to the initiation of apoptosis in cancer cells. No peptide has been designed so far to inhibit hexokinase II. The aim of this study was to inhibit the dimerization of enzyme subunits in order to inhibition the formation of (VDAC1) and the hexokinase II complex. In this study, the molecular dynamics simulation of the enzyme in monomer and dimer states was investigated in terms of RMSF, RMSD and radius of gyration. The following process involves extracting and designing variable-length peptides from the interacting segments of enzyme monomers. Using molecular dynamics simulation, the stability of the peptide was determined in terms of RMSD. Molecular docking was used to investigate the interaction between the designed peptides. Finally, the inhibitory effect of peptides on subunit association was measured using dynamic light scattering (DLS) technique. Our results showed that the designed peptides, which mimic common amino acids in dimerization, interrupt the bona fide form of the enzyme subunits. The result of this study provides a new way to disrupt the assembly process and thereby decreased the function of the hexokinase II. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00201-8.

2.
Mol Genet Genomic Med ; 12(2): e2412, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400608

RESUMEN

BACKGROUND: Variants in the Aristaless-related homeobox (ARX) gene lead to a variety of phenotypes, with intellectual disability being a steady feature. Other features can include severe epilepsy, spasticity, movement disorders, hydranencephaly, and ambiguous genitalia in males. X-linked Ohtahara syndrome or Type 1 early infantile epileptic encephalopathy (EIEE1) is a severe early-onset epileptic encephalopathy with arrested psychomotor development caused by hemizygous mutations in the ARX gene, which encodes a transcription factor in fundamental brain developmental processes. METHODS: We presented a case report of a 2-year-old boy who exhibited symptoms such as microcephaly, seizures, and severe multifocal epileptic abnormalities, and genetic techniques such as autozygosity mapping, Sanger sequencing, and whole-exome sequencing. RESULTS: We confirmed that the patient had the NM_139058.3:c.84C>A; p.(Cys28Ter) mutation in the ARX gene. CONCLUSION: The patient with EIEE1 had physical symptoms and hypsarrhythmia on electroencephalogram. Genetic testing identified a causative mutation in the ARX gene, emphasizing the role of genetic testing in EIEE diagnosis.


Asunto(s)
Epilepsia , Espasmos Infantiles , Masculino , Humanos , Preescolar , Espasmos Infantiles/genética , Espasmos Infantiles/diagnóstico , Proteínas de Homeodominio/genética , Epilepsia/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...