Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Regen Ther ; 26: 60-70, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38828010

RESUMEN

Background: Osteoarthritis (OA) is the most frequently diagnosed chronic joint disease. CircSEC24A is significantly elevated in OA chondrocytes upon IL-1ß stimulation. However, its biological function in OA is still not fully understood. Methods: The circRNAs-miRNA-mRNA network was predicted by bioinformatics analysis. An in vitro OA chondrocytes model was established by IL-1ß stimulation. The expression of circSEC24A, miR-107-5p, CASP3, apoptosis-related molecules and extracellular matrix (ECM) components were detected by Western blot and qRT-PCR. MTT assay and Annexin V/PI staining were employed to monitor cell viability and apoptosis, respectively. The interaction between circSEC24A and miR-107-5p, as well as the binding between miR-107-5p and CASP3 3' UTR were detected by luciferase reporter and RIP assays. Cytokine secretion was monitored by ELISA assay. The role of circSEC24A was also explored in anterior cruciate ligament transection (ACLT) rat models. Results: CircSEC24A and CASP3 were increased, but miR-107-5p was decreased in rat OA cartilage tissues and OA chondrocytes. CircSEC24A acted as a sponge of miR-107-5p. Knockdown of circSEC24A promoted chondrocyte proliferation, but suppressed chondrocyte apoptosis, ECM degradation and inflammation via sponging miR-107-5p. CASP3 was identified as a miR-107-5p target gene. MiR-107-5p mimics protected against OA progression via targeting CASP3. Silencing of circSEC24A alleviated OA progression in ACLT model. Conclusion: CircSEC24A promotes OA progression through miR-107-5p/CASP3 axis.

2.
Biomed Pharmacother ; 171: 116214, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38290254

RESUMEN

Osteoporosis is a common systemic skeletal disease and a predominant underlying factor in the increased occurrence of fractures. The structure of isoflavones resembles that of estrogen and can confer similar but weaker effects. This study investigated the potential inhibitory effects of isoflavones from chickpea sprouts (ICS) on ovariectomy (OVX)-induced osteoporosis in vitro and in vivo. Notably, we found that ICS treatment could attenuate bone loss and improve trabecular microarchitecture and biomechanical properties of the fourth lumbar vertebra in OVX-induced osteoporotic rats and could also inhibit the development of a hyperosteometabolic state in this model. The osteogenic differentiation of bone marrow stem cells (BMSCs) was significantly enhanced by ICS intervention in vitro, and we confirmed that estrogen receptor α signaling was required for this increased osteogenic differentiation. Additionally, ICS has been shown to inhibit bone resorption via ERa modulation of the OPG/RANKL pathway. RANKL-induced osteoclastogenesis was reduced under ICS treatment, supporting that NF-κB signaling was inhibited by ICS. Thus, ICS attenuates osteoporosis progression by promoting osteogenic differentiation and inhibiting osteoclastic resorption. These results support the further exploration and development of ICS as a pharmacological agent for the treatment and prevention of osteoporosis.


Asunto(s)
Resorción Ósea , Cicer , Isoflavonas , Osteoporosis , Femenino , Ratas , Animales , Humanos , Cicer/metabolismo , Osteogénesis , Isoflavonas/farmacología , Osteoporosis/tratamiento farmacológico , Resorción Ósea/metabolismo , Diferenciación Celular , Ovariectomía , Osteoclastos , Ligando RANK/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...