RESUMEN
Mammalian DNA methylation is a critical epigenetic mechanism orchestrating gene expression networks in many biological processes. However, investigation of the functions of specific methylation events remains challenging. Here, we demonstrate that fusion of Tet1 or Dnmt3a with a catalytically inactive Cas9 (dCas9) enables targeted DNA methylation editing. Targeting of the dCas9-Tet1 or -Dnmt3a fusion protein to methylated or unmethylated promoter sequences caused activation or silencing, respectively, of an endogenous reporter. Targeted demethylation of the BDNF promoter IV or the MyoD distal enhancer by dCas9-Tet1 induced BDNF expression in post-mitotic neurons or activated MyoD facilitating reprogramming of fibroblasts into myoblasts, respectively. Targeted de novo methylation of a CTCF loop anchor site by dCas9-Dnmt3a blocked CTCF binding and interfered with DNA looping, causing altered gene expression in the neighboring loop. Finally, we show that these tools can edit DNA methylation in mice, demonstrating their wide utility for functional studies of epigenetic regulation.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Edición Génica/métodos , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor de Unión a CCCTC , Proteína 9 Asociada a CRISPR , Línea Celular , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Elementos de Facilitación Genéticos , Genoma , Ratones , Proteína MioD/metabolismo , Neuronas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/metabolismoRESUMEN
In this study, we describe the 3D chromosome regulatory landscape of human naive and primed embryonic stem cells. To devise this map, we identified transcriptional enhancers and insulators in these cells and placed them within the context of cohesin-associated CTCF-CTCF loops using cohesin ChIA-PET data. The CTCF-CTCF loops we identified form a chromosomal framework of insulated neighborhoods, which in turn form topologically associating domains (TADs) that are largely preserved during the transition between the naive and primed states. Regulatory changes in enhancer-promoter interactions occur within insulated neighborhoods during cell state transition. The CTCF anchor regions we identified are conserved across species, influence gene expression, and are a frequent site of mutations in cancer cells, underscoring their functional importance in cellular regulation. These 3D regulatory maps of human pluripotent cells therefore provide a foundation for future interrogation of the relationships between chromosome structure and gene control in development and disease.
Asunto(s)
Cromosomas Humanos/genética , Células Madre Pluripotentes/metabolismo , Factor de Unión a CCCTC , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , ADN/metabolismo , Enfermedad/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Células Madre Embrionarias Humanas/metabolismo , Humanos , Elementos Aisladores/genética , MicroARNs/metabolismo , Conformación de Ácido Nucleico , Proteínas Represoras , Factores de Transcripción/metabolismo , CohesinasRESUMEN
Hundreds of transcription factors (TFs) are expressed in each cell type, but cell identity can be induced through the activity of just a small number of core TFs. Systematic identification of these core TFs for a wide variety of cell types is currently lacking and would establish a foundation for understanding the transcriptional control of cell identity in development, disease, and cell-based therapy. Here, we describe a computational approach that generates an atlas of candidate core TFs for a broad spectrum of human cells. The potential impact of the atlas was demonstrated via cellular reprogramming efforts where candidate core TFs proved capable of converting human fibroblasts to retinal pigment epithelial-like cells. These results suggest that candidate core TFs from the atlas will prove a useful starting point for studying transcriptional control of cell identity and reprogramming in many human cell types.
Asunto(s)
Reprogramación Celular , Células Epiteliales/citología , Fibroblastos/citología , Epitelio Pigmentado de la Retina/citología , Factores de Transcripción/genética , Línea Celular , Simulación por Computador , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Humanos , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
More than a thousand proteins are thought to contribute to mammalian chromatin and its regulation, but our understanding of the genomic occupancy and function of most of these proteins is limited. Here we describe an approach, which we call "chromatin proteomic profiling," to identify proteins associated with genomic regions marked by specifically modified histones. We used ChIP-MS to identify proteins associated with genomic regions marked by histones modified at specific lysine residues, including H3K27ac, H3K4me3, H3K79me2, H3K36me3, H3K9me3, and H4K20me3, in ES cells. We identified 332 known and 114 novel proteins associated with these histone-marked genomic segments. Many of the novel candidates have been implicated in various diseases, and their chromatin association may provide clues to disease mechanisms. More than 100 histone modifications have been described, so similar chromatin proteomic profiling studies should prove to be valuable for identifying many additional chromatin-associated proteins in a broad spectrum of cell types.
Asunto(s)
Cromatina/química , Histonas/química , Proteómica/métodos , Animales , Inmunoprecipitación de Cromatina , Reactivos de Enlaces Cruzados/química , Células Madre Embrionarias/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Genoma , Genómica , Humanos , Lisina/química , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Proteoma , Factores de Transcripción/metabolismoRESUMEN
Bacterial type II CRISPR-Cas9 systems have been widely adapted for RNA-guided genome editing and transcription regulation in eukaryotic cells, yet their in vivo target specificity is poorly understood. Here we mapped genome-wide binding sites of a catalytically inactive Cas9 (dCas9) from Streptococcus pyogenes loaded with single guide RNAs (sgRNAs) in mouse embryonic stem cells (mESCs). Each of the four sgRNAs we tested targets dCas9 to between tens and thousands of genomic sites, frequently characterized by a 5-nucleotide seed region in the sgRNA and an NGG protospacer adjacent motif (PAM). Chromatin inaccessibility decreases dCas9 binding to other sites with matching seed sequences; thus 70% of off-target sites are associated with genes. Targeted sequencing of 295 dCas9 binding sites in mESCs transfected with catalytically active Cas9 identified only one site mutated above background levels. We propose a two-state model for Cas9 binding and cleavage, in which a seed match triggers binding but extensive pairing with target DNA is required for cleavage.
Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Unión al ADN/genética , Desoxirribonucleasa I/genética , Células Madre Embrionarias/fisiología , Genoma/genética , Modelos Genéticos , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Ratones , Datos de Secuencia Molecular , Unión ProteicaRESUMEN
Technologies allowing for specific regulation of endogenous genes are valuable for the study of gene functions and have great potential in therapeutics. We created the CRISPR-on system, a two-component transcriptional activator consisting of a nuclease-dead Cas9 (dCas9) protein fused with a transcriptional activation domain and single guide RNAs (sgRNAs) with complementary sequence to gene promoters. We demonstrate that CRISPR-on can efficiently activate exogenous reporter genes in both human and mouse cells in a tunable manner. In addition, we show that robust reporter gene activation in vivo can be achieved by injecting the system components into mouse zygotes. Furthermore, we show that CRISPR-on can activate the endogenous IL1RN, SOX2, and OCT4 genes. The most efficient gene activation was achieved by clusters of 3-4 sgRNAs binding to the proximal promoters, suggesting their synergistic action in gene induction. Significantly, when sgRNAs targeting multiple genes were simultaneously introduced into cells, robust multiplexed endogenous gene activation was achieved. Genome-wide expression profiling demonstrated high specificity of the system.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasa I/genética , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Activación Transcripcional , Animales , Clonación Molecular , Femenino , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Proteínas Recombinantes de Fusión/genética , Transgenes , ARN Pequeño no TraducidoRESUMEN
The functional study of Y chromosome genes has been hindered by a lack of mouse models with specific Y chromosome mutations. We used transcription activator-like effector nuclease (TALEN)-mediated gene editing in mouse embryonic stem cells (mESCs) to produce mice with targeted gene disruptions and insertions in two Y-linked genes--Sry and Uty. TALEN-mediated gene editing is a useful tool for dissecting the biology of the Y chromosome.