Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Bioelectrochemistry ; 158: 108698, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38640856

RESUMEN

Dysregulation of miRNA expression occurs in many cancers, making miRNAs useful in cancer diagnosis and therapeutic guidance. In a clinical context using methods such as polymerase chain reaction (PCR), the limited amount of miRNAs in circulation often limits their quantification. Here, we present a PCR-free and sensitive singlet oxygen (1O2)-based strategy for the detection and quantification of miRNAs in untreated human plasma from patients diagnosed with prostate cancer. A target miRNA is specifically captured by functionalised magnetic beads and a detection oligonucleotide probe in a sandwich-like format. The formed complex is concentrated at the sensor surface via magnetic beads, providing an interface for the photoinduced redox signal amplification. The detection oligonucleotide probe bears a molecular photosensitiser, which produces 1O2 upon illumination, oxidising a redox reporter and creating a redox cycling loop, allowing quantification of pM level miRNA in diluted human plasma within minutes after hybridisation and without target amplification.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Oxígeno Singlete , Humanos , Masculino , MicroARNs/sangre , MicroARNs/genética , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/sangre , Biopsia Líquida/métodos , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Oxidación-Reducción
2.
Biosens Bioelectron ; 249: 115957, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38199080

RESUMEN

Single nucleotide point mutations in the KRAS oncogene occur frequently in human cancers, rendering them intriguing targets for diagnosis, early detection and personalized treatment. Current detection methods are based on polymerase chain reaction, sometimes combined with next-generation sequencing, which can be expensive, complex and have limited availability. Here, we propose a novel singlet oxygen (1O2)-based photoelectrochemical detection methodology for single-point mutations, using KRAS mutations as a case study. This detection method combines the use of a sandwich assay, magnetic beads and robust chemical photosensitizers, that need only air and light to produce 1O2, to ensure high specificity and sensitivity. We demonstrate that hybridization of the sandwich hybrid at high temperatures enables discrimination between mutated and wild-type sequences with a detection rate of up to 93.9%. Additionally, the presence of background DNA sequences derived from human cell-line DNA, not containing the mutation of interest, did not result in a signal, highlighting the specificity of the methodology. A limit of detection as low as 112 pM (1.25 ng/mL) was achieved without employing any amplification techniques. The developed 1O2-based photoelectrochemical methodology exhibits unique features, including rapidity, ease of use, and affordability, highlighting its immense potential in the field of nucleic acid-based diagnostics.


Asunto(s)
Técnicas Biosensibles , Mutación Puntual , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Oxígeno Singlete , Proteínas ras/genética , Análisis Mutacional de ADN/métodos , Mutación , Oncogenes
3.
Bioelectrochemistry ; 153: 108495, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37399650

RESUMEN

MicroRNAs (miRNAs) are small oligonucleotides (18-25 bases), biologically relevant for epigenetic regulation of key processes, particularly in association with cancer. Research effort has therefore been directed towards the monitoring and detection of miRNAs to progress (early) cancer diagnoses. Traditional detection strategies for miRNAs are expensive, with a lengthy time-to-result. In this study we develop an oligonucleotide-based assay using electrochemistry for the specific, selective and sensitive detection of a circulating miRNA (miR-141) associated with prostate cancer. In the assay, the excitation and readout of the signal are independent: an electrochemical stimulation followed by an optical readout. A 'sandwich' approach is incorporated, consisting of a biotinylated capture probe immobilised on streptavidin-functionalised surfaces and a detection probe labelled with digoxigenin. We show that the assay allows the detection of miR-141 in human serum, even in the presence of other miRNAs, with a LOD of 0.25 pM. The developed electrochemiluminescent assay has, therefore, the potential for efficient universal oligonucleotide target detection via the redesign of capture and detection probes.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , Oligonucleótidos , Epigénesis Genética , MicroARNs/genética , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética
4.
Bioelectrochemistry ; 152: 108428, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37004377

RESUMEN

The haem group is a promising redox probe for the design of albumin-based voltammetric sensors. Among the endogenous ligands carried by human serum albumin (hSA), haem is characterised by a reversible redox behaviour and its binding kinetics strongly depend on hSA's conformation, which, in turn, depends on the presence of other ligands. In this work, the potential applicability of haem, especially hemin, as a redox probe was first tested in a proof-of-concept study using perfluorooctanoic acid (PFOA) as model analyte. PFOA is known to bind hSA by occupying Sudlow's I site (FA7) which is spatially related to the haem-binding site (FA1). The latter undergoes a conformational change, which is expected to affect hemin's binding kinetics. To verify this hypothesis, hemin:albumin complexes in the presence/absence of PFOA were first screened by UV-Vis spectroscopy. Once the complex formation was verified, haem was further characterised via electrochemical methods to estimate its electron transfer kinetics. The hemin:albumin:PFOA system was studied in solution, with the aim of describing the multiple equilibria at stake and designing an electrochemical assay for PFOA monitoring. This latter could be integrated with protein-based bioremediation approaches for the treatment of per- and polyfluoroalkyl substances polluted waters. Overall, our preliminary results show how hemin can be applied as a redox probe in albumin-based voltammetric sensing strategies.


Asunto(s)
Fluorocarburos , Hemo , Humanos , Hemo/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Hemina , Ligandos , Albúmina Sérica Humana/química , Sitios de Unión , Unión Proteica
5.
Biosens Bioelectron ; 220: 114881, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36375255

RESUMEN

The WHO estimates that 8-10% of couples are facing fertility problems, often due to inaccuracy in predicting the female's ovulation period controlled by four key hormones. The quantification and monitoring of such key hormones are crucial for the early identification of infertility, but also in improving therapeutic management associated with hormonal imbalance. In this review, we extensively summarize and discuss: i) drawbacks of laboratory methods for fertility testing (costly, invasive, complex) and commercially available point-of-care tests (measuring only one/two of the four key hormones), ii) the understanding of different biosensors for fertility monitoring, and iii) an in-depth classification and overview of aptamer-based sensing of the hormones of interest. This review provides insights on hormone detection strategies for fertility, with a focus on the classification of the current 'aptasensing' strategies, aiming to assist as a basic guide for the development of accurate fertility window monitoring tools based on aptamers.


Asunto(s)
Técnicas Biosensibles , Femenino , Humanos , Técnicas Biosensibles/métodos , Hormonas , Fertilidad
6.
Sci Rep ; 12(1): 133, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997002

RESUMEN

Artemisinin (ART) is a vital medicinal compound that is used alone or as part of a combination therapy against malaria. ART is thought to function by attaching to heme covalently and alkylating a range of proteins. Using a combination of biophysical methods, we demonstrate that ART is bound by three-way junction and duplex containing DNA molecules. Binding of ART by DNA is first shown for the cocaine-binding DNA aptamer and extensively studied using this DNA molecule. Isothermal titration calorimetry methods show that the binding of ART is both entropically and enthalpically driven at physiological NaCl concentration. Native mass spectrometry methods confirm DNA binding and show that a non-covalent complex is formed. Nuclear magnetic resonance spectroscopy shows that ART binds at the three-way junction of the cocaine-binding aptamer, and that binding results in the folding of the structure-switching variant of this aptamer. This structure-switching ability was exploited using the photochrome aptamer switch assay to demonstrate that ART can be detected using this biosensing assay. This study is the first to demonstrate the DNA binding ability of ART and should lay the foundation for further work to study implications of DNA binding for the antimalarial activity of ART.


Asunto(s)
Antimaláricos/metabolismo , Aptámeros de Nucleótidos/metabolismo , Artemisininas/metabolismo , Antimaláricos/química , Aptámeros de Nucleótidos/química , Artemisininas/química , Unión Competitiva , Técnicas Biosensibles , Conformación de Ácido Nucleico , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad
7.
Talanta ; 239: 123121, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34942485

RESUMEN

This work presents a proof-of-concept assay for the detection and quantification of small molecules based on aptamer recognition and electrochemiluminescence (ECL) readout. The testosterone-binding (TESS.1) aptamer was used to demonstrate the novel methodology. Upon binding of the target, the TESS.1 aptamer is released from its complementary capture probe - previously immobilized at the surface of the electrode - producing a decrease in the ECL signal after a washing step removing the released (labeled) TESS.1 aptamer. The analytical capability of the ECL assay towards testosterone detection was investigated displaying a linear range from 0.39 to 1.56 µM with a limit of detection of 0.29 µM. The selectivity of the proposed assay was assessed by performing two different negative control experiments; i) detection of testosterone with a randomized ssDNA sequence and ii) detection of two other steroids, i.e. deoxycholic acid and hydrocortisone with the TESS.1 aptamer. In parallel, complementary analytical techniques were employed to confirm the suggested mechanism: i) native nano-electrospray ionization mass spectrometry (native nESI-MS) was used to determine the stoichiometry of the binding, and to characterize aptamer-target interactions; and, ii) isothermal titration calorimetry (ITC) was carried out to elucidate the dissociation constant (Kd) of the complex of testosterone and the TESS.1 aptamer. The combination of these techniques provided a complete understanding of the aptamer performance, the binding mechanism, affinity and selectivity. Furthermore, this important characterization carried out in parallel validates the real functionality of the aptamer (TESS.1) ensuring its use towards selective testosterone binding in further biosensors. This research will pave the way for the development of new aptamer-based assays coupled with ECL sensing for the detection of relevant small molecules.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Electrodos , Mediciones Luminiscentes , Testosterona
8.
Analyst ; 146(6): 2065-2073, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33538714

RESUMEN

Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins' (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.


Asunto(s)
Fluorocarburos , Albúminas , Fluorocarburos/toxicidad , Espectrometría de Masas
9.
Protein Sci ; 30(4): 830-841, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33550662

RESUMEN

Perfluorooctanoic acid (PFOA) is a toxic compound that is absorbed and distributed throughout the body by noncovalent binding to serum proteins such as human serum albumin (hSA). Though the interaction between PFOA and hSA has been already assessed using various analytical techniques, a high resolution and detailed analysis of the binding mode is still lacking. We report here the crystal structure of hSA in complex with PFOA and a medium-chain saturated fatty acid (FA). A total of eight distinct binding sites, four occupied by PFOAs and four by FAs, have been identified. In solution binding studies confirmed the 4:1 PFOA-hSA stoichiometry and revealed the presence of one high and three low affinity binding sites. Competition experiments with known hSA-binding drugs allowed locating the high affinity binding site in sub-domain IIIA. The elucidation of the molecular basis of the interaction between PFOA and hSA might provide not only a better assessment of the absorption and elimination mechanisms of these compounds in vivo but also have implications for the development of novel molecular receptors for diagnostic and biotechnological applications.


Asunto(s)
Caprilatos/química , Fluorocarburos/química , Modelos Moleculares , Albúmina Sérica Humana/química , Cristalografía por Rayos X , Humanos , Dominios Proteicos
10.
Talanta ; 224: 121917, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379118

RESUMEN

The range of applications for aptamers, small oligonucleotide-based receptors binding to their targets with high specificity and affinity, has been steadily expanding. Our understanding of the mechanisms governing aptamer-ligand recognition and binding is however lagging, stymieing the progress in the rational design of new aptamers and optimization of the known ones. Here we demonstrate the capabilities and limitations of native ion mobility-mass spectrometry for the analysis of their higher-order structure and non-covalent interactions. A set of related cocaine-binding aptamers, displaying a range of folding properties and ligand binding affinities, was used as a case study in both positive and negative electrospray ionization modes. Using carefully controlled experimental conditions, we probed their conformational behavior and interactions with the high-affinity ligand quinine as a surrogate for cocaine. The ratios of bound and unbound aptamers in the mass spectra were used to rank them according to their apparent quinine-binding affinity, qualitatively matching the published ranking order. The arrival time differences between the free aptamer and aptamer-quinine complexes were consistent with a small ligand-induced conformational change, and found to inversely correlate with the affinity of binding. This mass spectrometry-based approach provides a fast and convenient way to study the molecular basis of aptamer-ligand recognition.


Asunto(s)
Aptámeros de Nucleótidos , Sitios de Unión , Ligandos , Espectrometría de Masas , Conformación de Ácido Nucleico
11.
J Am Chem Soc ; 142(46): 19622-19630, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33166132

RESUMEN

In this manuscript, we compare different analytical methodologies to validate or disprove the binding capabilities of aptamer sequences. This was prompted by the lack of a universally accepted and robust quality control protocol for the characterization of aptamer performances coupled with the observation of independent yet inconsistent data sets in the literature. As an example, we chose three aptamers with a reported affinity in the nanomolar range for ampicillin, a ß-lactam antibiotic, used as biorecognition elements in several detection strategies described in the literature. Application of a well-known colorimetric assay based on aggregation of gold nanoparticles (AuNPs) yielded conflicting results with respect to the original report. Therefore, ampicillin binding was evaluated in solution using isothermal titration calorimetry (ITC), native nano-electrospray ionization mass spectrometry (native nESI-MS), and 1H-nuclear magnetic resonance spectroscopy (1H NMR). By coupling the thermodynamic data obtained with ITC with the structural information on the binding event given by native nESI-MS and 1H NMR we could verify that none of the ampicillin aptamers show any specific binding with their intended target. The effect of AuNPs on the binding event was studied by both ITC and 1H NMR, again without providing positive evidence of ampicillin binding. To validate the performance of our analytical approach, we investigated two well-characterized aptamers for cocaine/quinine (MN4), chosen for its nanomolar range affinity, and l-argininamide (1OLD) to show the versatility of our approach. The results clearly indicate the need for a multifaceted analytical approach, to unequivocally establish the actual detection potential and performance of aptamers aimed at small organic molecules.

12.
Biochem J ; 477(7): 1203-1218, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32167135

RESUMEN

Mutations in the Parkinson's disease (PD)-associated protein leucine-rich repeat kinase 2 (LRRK2) commonly lead to a reduction of GTPase activity and increase in kinase activity. Therefore, strategies for drug development have mainly been focusing on the design of LRRK2 kinase inhibitors. We recently showed that the central RocCOR domains (Roc: Ras of complex proteins; COR: C-terminal of Roc) of a bacterial LRRK2 homolog cycle between a dimeric and monomeric form concomitant with GTP binding and hydrolysis. PD-associated mutations can slow down GTP hydrolysis by stabilizing the protein in its dimeric form. Here, we report the identification of two Nanobodies (NbRoco1 and NbRoco2) that bind the bacterial Roco protein (CtRoco) in a conformation-specific way, with a preference for the GTP-bound state. NbRoco1 considerably increases the GTP turnover rate of CtRoco and reverts the decrease in GTPase activity caused by a PD-analogous mutation. We show that NbRoco1 exerts its effect by allosterically interfering with the CtRoco dimer-monomer cycle through the destabilization of the dimeric form. Hence, we provide the first proof of principle that allosteric modulation of the RocCOR dimer-monomer cycle can alter its GTPase activity, which might present a potential novel strategy to overcome the effect of LRRK2 PD mutations.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlorobi/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Dominios Proteicos , Anticuerpos de Dominio Único/metabolismo , Proteínas ras/química , Regulación Alostérica , Animales , Camélidos del Nuevo Mundo , Diseño de Fármacos , Escherichia coli/metabolismo , Hidrólisis , Mutación , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...