Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Adv Model Earth Syst ; 14(6): e2021MS002951, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35864947

RESUMEN

Clouds are a key player in the global climate system, affecting the atmospheric water and energy budgets, and they are strongly coupled to the large-scale atmospheric circulation. Here, we examine the co-variability of the atmospheric energy and water budget imbalances in three different global model configurations-radiative-convective equilibrium, aqua-planet, and global simulations with land. The gradual increase in the level of complexity of the model configuration enables an investigation of the effects of rotation, meridional temperature gradient, land-sea contrast, and seasonal cycle on the co-variability of the water and energy imbalances. We demonstrate how this co-variability is linked to both the large-scale tropical atmospheric circulation and to cloud properties. Hence, we propose a co-variability-based framework that connects cloud properties to the large-scale tropical circulation and climate system and is directly linked to the top-down constrains on the system-the water and energy budgets. In addition, we examine how the water and energy budget imbalances co-variability depends on the temporal averaging scale, and explain its dependency on how stationary the circulation is in the different model configurations. Finally, we demonstrate the effect of an idealized global warming and convective aggregation on this co-variability.

2.
Geophys Res Lett ; 49(1): e2021GL095629, 2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35865079

RESUMEN

The Sahel rainfall has a close teleconnection with North Atlantic sea surface temperature (NASST) variability, which has separately been shown to be affected by aerosols. Therefore, changes in regional aerosols emission could potentially drive multidecadal Sahel rainfall variability. Here we combine ensembles of state-of-the-art global climate models (the CESM and CanESM large ensemble simulations and CMIP6 models) with observational data sets to demonstrate that anthropogenic aerosols have significantly impacted 20th-century detrended Sahel rainfall multidecadal variability through modifying NASST. We show that aerosol-induced multidecadal variations of downward solar radiative fluxes over the North Atlantic cause NASST variability during the 20th century, altering the ITCZ position and dynamically linking aerosol effects to Sahel rainfall variability. This process chain is caused by aerosol-induced changes in radiative surface fluxes rather than changes in ocean circulations. CMIP6 models further suggest that aerosol-cloud interactions modulate the inter-model uncertainty of simulated NASST and potentially the Sahel rainfall variability.

3.
Atmos Chem Phys ; 22(1): 641-674, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35136405

RESUMEN

Aerosol-cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide "opportunistic experiments" (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change.

4.
J Adv Model Earth Syst ; 13(10): e2021MS002579, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34691362

RESUMEN

Tropical deep convection can aggregate into large clusters, which can have impacts on the local humidity and precipitation. Sea surface temperature (SST) gradients have been shown to organize convection, yet there has been little work done to investigate the impact of diabatic heating perturbations in the atmosphere on the aggregation of convection. Here we investigate how anomalous diabatic heating of the atmospheric column, through an idealized aerosol plume, affects the existence and mechanisms of convective aggregation in non-rotating, global radiative-convective equilibrium simulations. We show that the aerosol forcing has the ability to increase the degree of aggregation, especially at lower SSTs. Detailed investigation shows that the diabatic heating source incites a thermally driven circulation, forced by the shortwave perturbation. The increase in aggregation is caused in part by this circulation, and in part by the longwave heating anomalies occurring due to the surface convergence of moisture and convection. At higher SSTs, longwave feedbacks are crucial for the aggregation of convection, even with the shortwave heating perturbation. At lower SSTs, convection is able to aggregate with the shortwave perturbation in the absence of longwave feedbacks. These perturbations provide a link to studying the effects of absorbing aerosol plumes on convection, for example during the Indian monsoon season. We argue that, as there is aggregation for plumes with realistic aerosol absorption optical depths, this could be an analogue for real-world organization in regions with high pollution.

5.
Nat Commun ; 12(1): 5476, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34531381

RESUMEN

Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset. The presence of dominating continental aerosol transport can mask the SSA cycle. We did not find significant links between the diel cycle of SSA number concentration and diel variations of surface winds, atmospheric physical properties, radiation, pollution, nor oceanic physical properties. However, the daily mean sea surface temperature positively correlated with the magnitude of the day-to-nighttime increase in SSA concentration. Parallel diel patterns in particle sizes were also detected in near-surface waters attributed to variations in the size of particles smaller than ~1 µm. These variations may point to microbial day-to-night modulation of bubble-bursting dynamics as a possible cause of the SSA cycle.

6.
Geophys Res Lett ; 47(22): e2020GL090778, 2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33380762

RESUMEN

The North Atlantic warming hole (NAWH) is referred to as a reduced warming, or even cooling, of the North Atlantic during an anthropogenic-driven global warming. A NAWH is predicted by climate models during the 21st century, and its pattern is already emerging in observations. Despite the known key role of the North Atlantic surface temperatures in setting the Northern Hemisphere climate, the mechanisms behind the NAWH are still not fully understood. Using state-of-the-art climate models, we show that anthropogenic aerosol forcing opposes the formation of the NAWH (by leading to a local warming) and delays its emergence by about 30 years. In agreement with previous studies, we also demonstrate that the relative warming of the North Atlantic under aerosol forcing is due to changes in ocean heat fluxes, rather than air-sea fluxes. These results suggest that the predicted reduction in aerosol forcing during the 21st century may accelerate the formation of the NAWH.

7.
Geophys Res Lett ; 46(17-18): 10504-10511, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31762521

RESUMEN

Global mean precipitation changes due to climate change were previously shown to be relatively small and well constrained by the energy budget. However, local precipitation changes can be much more significant. In this paper we propose that for large enough scales, for which the water budget is closed (precipitation [P] roughly equals evaporation [E]), changes in P approach the small global mean value. However, for smaller scales, for which P and E are not necessarily equal and convergence of water vapor still plays a role, changes in P could be much larger due to dynamical contributions. Using 40 years of two reanalysis data sets, 39 Coupled Model Intercomparison Project Phase 5 (CMIP5) models and additional numerical simulations, we identify the scale of transition in the importance of the different terms in the water budget to precipitation to be ~3,500-4,000 km and demonstrate its relation to the spatial scale of precipitation changes under climate change.

8.
Geophys Res Lett ; 46(13): 7828-7837, 2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31598021

RESUMEN

Precipitation plays a crucial role in the Earth's energy balance, the water cycle, and the global atmospheric circulation. Aerosols, by direct interaction with radiation and by serving as cloud condensation nuclei, may affect clouds and rain formation. This effect can be examined in terms of energetic constraints, that is, any aerosol-driven diabatic heating/cooling of the atmosphere will have to be balanced by changes in precipitation, radiative fluxes, or divergence of dry static energy. Using an aqua-planet general circulation model (GCM), we show that tropical and extratropical precipitation have contrasting responses to aerosol perturbations. This behavior can be explained by contrasting ability of the atmosphere to diverge excess dry static energy in the two different regions. It is shown that atmospheric heating in the tropics leads to large-scale thermally driven circulation and a large increase in precipitation, while the excess energy from heating in the extratropics is constrained due to the effect of the Coriolis force, causing the precipitation to decrease.

9.
Sci Rep ; 9(1): 7809, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127137

RESUMEN

Aerosol effects on convective clouds and associated precipitation constitute an important open-ended question in climate research. Previous studies have linked an increase in aerosol concentration to a delay in the onset of rain, invigorated clouds and stronger rain rates. Here, using observational data, we show that the aerosol effect on convective clouds shifts from invigoration to suppression with increasing aerosol optical depth. We explain this shift in trend (using a cloud model) as the result of a competition between two types of microphysical processes: cloud-core-based invigorating processes vs. peripheral suppressive processes. We show that the aerosol optical depth value that marks the shift between invigoration and suppression depends on the environmental thermodynamic conditions. These findings can aid in better parameterizing aerosol effects in climate models for the prediction of climate trends.

10.
iScience ; 10: 192-202, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30529951

RESUMEN

Clouds control much of the Earth's energy and water budgets. Aerosols, suspended in the atmosphere, interact with clouds and affect their properties. Recent studies have suggested that the aerosol effect on warm convective cloud systems evolve in time and eventually approach a steady state for which the overall effects of aerosols can be considered negligible. Using numerical simulations, it was estimated that the time needed for such cloud fields to approach this state is >24 hr. These results suggest that the typical cloud field lifetime is an important parameter in determining the total aerosol effect. Here, analyzing satellite observations and reanalysis data (with the aid of numerical simulations), we show that the characteristic timescale of warm convective cloud fields is less than 12 hr. Such a timescale implies that these clouds should be regarded as transient-state phenomena and therefore can be highly susceptible to changes in aerosol properties.

11.
Sci Rep ; 6: 38769, 2016 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929097

RESUMEN

Convective cloud formation and evolution strongly depend on environmental temperature and humidity profiles. The forming clouds change the profiles that created them by redistributing heat and moisture. Here we show that the evolution of the field's thermodynamic properties depends heavily on the concentration of aerosol, liquid or solid particles suspended in the atmosphere. Under polluted conditions, rain formation is suppressed and the non-precipitating clouds act to warm the lower part of the cloudy layer (where there is net condensation) and cool and moisten the upper part of the cloudy layer (where there is net evaporation), thereby destabilizing the layer. Under clean conditions, precipitation causes net warming of the cloudy layer and net cooling of the sub-cloud layer (driven by rain evaporation), which together act to stabilize the atmosphere with time. Previous studies have examined different aspects of the effects of clouds on their environment. Here, we offer a complete analysis of the cloudy atmosphere, spanning the aerosol effect from instability-consumption to enhancement, below, inside and above warm clouds, showing the temporal evolution of the effects. We propose a direct measure for the magnitude and sign of the aerosol effect on thermodynamic instability.

12.
Science ; 344(6188): 1143-6, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24904161

RESUMEN

Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base and cold top. Here, we provide evidence from observations and numerical modeling of a dramatic aerosol effect on warm clouds. We propose that convective-cloud invigoration by aerosols can be viewed as an extension of the concept of aerosol-limited clouds, where cloud development is limited by the availability of cloud-condensation nuclei. A transition from pristine to slightly polluted atmosphere yields estimated negative forcing of ~15 watts per square meter (cooling), suggesting that a substantial part of this anthropogenic forcing over the oceans occurred at the beginning of the industrial era, when the marine atmosphere experienced such transformation.


Asunto(s)
Aerosoles , Atmósfera/química , Cambio Climático , Contaminación Ambiental , Calor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...