Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(16)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37606041

RESUMEN

Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet ß cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in ß cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human ß cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D ß cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human ß cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-ß cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional ß cell signature.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Adulto , Humanos , Animales , Ratones , Factor de Transcripción MafB/genética , Insulina
2.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555109

RESUMEN

Obstructive sleep apnea (OSA) is a highly prevalent condition, characterized by intermittent hypoxia (IH), sleep disruption, and altered autonomic nervous system function. OSA has been independently associated with dyslipidemia, insulin resistance, and metabolic syndrome. Brown adipose tissue (BAT) has been suggested as a modulator of systemic glucose tolerance through adaptive thermogenesis. Reductions in BAT mass have been associated with obesity and metabolic syndrome. No studies have systematically characterized the effects of chronic IH on BAT. Thus, we aimed to delineate IH effects on BAT and concomitant metabolic changes. C57BL/6J 8-week-old male mice were randomly assigned to IH during sleep (alternating 90 s cycles of 6.5% FIO2 followed by 21% FIO2) or normoxia (room air, RA) for 10 weeks. Mice were subjected to glucose tolerance testing and 18F-FDG PET-MRI towards the end of the exposures followed by BAT tissues analyses for morphological and global transcriptomic changes. Animals exposed to IH were glucose intolerant despite lower total body weight and adiposity. BAT tissues in IH-exposed mice demonstrated characteristic changes associated with "browning"-smaller lipids, increased vascularity, and a trend towards higher protein levels of UCP1. Conversely, mitochondrial DNA content and protein levels of respiratory chain complex III were reduced. Pro-inflammatory macrophages were more abundant in IH-exposed BAT. Transcriptomic analysis revealed increases in fatty acid oxidation and oxidative stress pathways in IH-exposed BAT, along with a reduction in pathways related to myogenesis, hypoxia, and IL-4 anti-inflammatory response. Functionally, IH-exposed BAT demonstrated reduced absorption of glucose on PET scans and reduced phosphorylation of AKT in response to insulin. Current studies provide initial evidence for the presence of a maladaptive response of interscapular BAT in response to chronic IH mimicking OSA, resulting in a paradoxical divergence, namely, BAT browning but tissue-specific and systemic insulin resistance. We postulate that oxidative stress, mitochondrial dysfunction, and inflammation may underlie these dichotomous outcomes in BAT.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Apnea Obstructiva del Sueño , Masculino , Animales , Ratones , Resistencia a la Insulina/fisiología , Síndrome Metabólico/complicaciones , Ratones Endogámicos C57BL , Hipoxia/metabolismo , Obesidad/complicaciones , Insulina , Glucosa/metabolismo , Apnea Obstructiva del Sueño/metabolismo , Tejido Adiposo Pardo/metabolismo , Sueño
3.
Cell Rep ; 41(9): 111719, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450253

RESUMEN

Diabetogenic ablation of beta cells in mice triggers a regenerative response whereby surviving beta cells proliferate and euglycemia is regained. Here, we identify and characterize heterogeneity in response to beta cell ablation. Efficient beta cell elimination leading to severe hyperglycemia (>28 mmol/L), causes permanent diabetes with failed regeneration despite cell cycle engagement of surviving beta cells. Strikingly, correction of glycemia via insulin, SGLT2 inhibition, or a ketogenic diet for about 3 weeks allows partial regeneration of beta cell mass and recovery from diabetes, demonstrating regenerative potential masked by extreme glucotoxicity. We identify gene expression changes in beta cells exposed to extremely high glucose levels, pointing to metabolic stress and downregulation of key cell cycle genes, suggesting failure of cell cycle completion. These findings reconcile conflicting data on the impact of glucose on beta cell regeneration and identify a glucose threshold converting glycemic load from pro-regenerative to anti-regenerative.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Células Secretoras de Insulina , Animales , Ratones , Control Glucémico , Glucosa
4.
Sleep ; 45(6)2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35034130

Asunto(s)
Hipoxia , Humanos
5.
Diabetes ; 67(11): 2305-2318, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150306

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease where pancreatic ß-cells are destroyed by islet-infiltrating T cells. Although a role for ß-cell defects has been suspected, ß-cell abnormalities are difficult to demonstrate. We show a ß-cell DNA damage response (DDR), presented by activation of the 53BP1 protein and accumulation of p53, in biopsy and autopsy material from patients with recently diagnosed T1D as well as a rat model of human T1D. The ß-cell DDR is more frequent in islets infiltrated by CD45+ immune cells, suggesting a link to islet inflammation. The ß-cell toxin streptozotocin (STZ) elicits DDR in islets, both in vivo and ex vivo, and causes elevation of the proinflammatory molecules IL-1ß and Cxcl10. ß-Cell-specific inactivation of the master DNA repair gene ataxia telangiectasia mutated (ATM) in STZ-treated mice decreases the expression of proinflammatory cytokines in islets and attenuates the development of hyperglycemia. Together, these data suggest that ß-cell DDR is an early event in T1D, possibly contributing to autoimmunity.


Asunto(s)
Daño del ADN/inmunología , Diabetes Mellitus Tipo 1/inmunología , Inflamación/inmunología , Células Secretoras de Insulina/inmunología , Islotes Pancreáticos/inmunología , Adulto , Animales , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/patología , Femenino , Humanos , Inflamación/patología , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
6.
J Clin Invest ; 127(1): 230-243, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27941241

RESUMEN

Type 2 diabetes is thought to involve a compromised ß cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult ß cell identity and function. PAX6 was downregulated in ß cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in ß cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of ß cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of ß cell genes, thus maintaining mature ß cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human ß cells. We conclude that reduced expression of PAX6 in metabolically stressed ß cells may contribute to ß cell failure and α cell dysfunction in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Cetoacidosis Diabética/metabolismo , Células Secretoras de Glucagón/metabolismo , Hiperglucemia/metabolismo , Células Secretoras de Insulina/metabolismo , Factor de Transcripción PAX6/biosíntesis , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Cetoacidosis Diabética/genética , Cetoacidosis Diabética/patología , Elementos de Facilitación Genéticos , Eliminación de Gen , Regulación de la Expresión Génica , Células Secretoras de Glucagón/patología , Hiperglucemia/genética , Hiperglucemia/patología , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Factor de Transcripción PAX6/genética
7.
Diabetes ; 66(2): 426-436, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27864307

RESUMEN

ß-Cell failure in type 2 diabetes (T2D) was recently proposed to involve dedifferentiation of ß-cells and ectopic expression of other islet hormones, including somatostatin and glucagon. Here we show that gastrin, a stomach hormone typically expressed in the pancreas only during embryogenesis, is expressed in islets of diabetic rodents and humans with T2D. Although gastrin in mice is expressed in insulin+ cells, gastrin expression in humans with T2D occurs in both insulin+ and somatostatin+ cells. Genetic lineage tracing in mice indicates that gastrin expression is turned on in a subset of differentiated ß-cells after exposure to severe hyperglycemia. Gastrin expression in adult ß-cells does not involve the endocrine progenitor cell regulator neurogenin3 but requires membrane depolarization, calcium influx, and calcineurin signaling. In vivo and in vitro experiments show that gastrin expression is rapidly eliminated upon exposure of ß-cells to normal glucose levels. These results reveal the fetal hormone gastrin as a novel marker for reversible human ß-cell reprogramming in diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Gastrinas/metabolismo , Células Secretoras de Insulina/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus/metabolismo , Regulación del Desarrollo de la Expresión Génica , Gerbillinae , Humanos , Inmunohistoquímica , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Secretoras de Somatostatina/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA