Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Nucl Cardiol ; 30(6): 2427-2437, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37221409

RESUMEN

BACKGROUND: The aim of this research was to asses perfusion-defect detection-accuracy by human observers as a function of reduced-counts for 3D Gaussian post-reconstruction filtering vs deep learning (DL) denoising to determine if there was improved performance with DL. METHODS: SPECT projection data of 156 normally interpreted patients were used for these studies. Half were altered to include hybrid perfusion defects with defect presence and location known. Ordered-subset expectation-maximization (OSEM) reconstruction was employed with the optional correction of attenuation (AC) and scatter (SC) in addition to distance-dependent resolution (RC). Count levels varied from full-counts (100%) to 6.25% of full-counts. The denoising strategies were previously optimized for defect detection using total perfusion deficit (TPD). Four medical physicist (PhD) and six physician (MD) observers rated the slices using a graphical user interface. Observer ratings were analyzed using the LABMRMC multi-reader, multi-case receiver-operating-characteristic (ROC) software to calculate and compare statistically the area-under-the-ROC-curves (AUCs). RESULTS: For the same count-level no statistically significant increase in AUCs for DL over Gaussian denoising was determined when counts were reduced to either the 25% or 12.5% of full-counts. The average AUC for full-count OSEM with solely RC and Gaussian filtering was lower than for the strategies with AC and SC, except for a reduction to 6.25% of full-counts, thus verifying the utility of employing AC and SC with RC. CONCLUSION: We did not find any indication that at the dose levels investigated and with the DL network employed, that DL denoising was superior in AUC to optimized 3D post-reconstruction Gaussian filtering.


Asunto(s)
Aprendizaje Profundo , Imagen de Perfusión Miocárdica , Humanos , Imagen de Perfusión Miocárdica/métodos , Tomografía Computarizada de Emisión de Fotón Único/métodos , Corazón , Curva ROC , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
2.
J Nucl Cardiol ; 28(2): 624-637, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-31077073

RESUMEN

BACKGROUND: In the ongoing efforts to reduce cardiac perfusion dose (injected radioactivity) for conventional SPECT/CT systems, we performed a human observer study to confirm our clinical model observer findings that iterative reconstruction employing OSEM (ordered-subset expectation-maximization) at 25% of the full dose (quarter-dose) has a similar performance for detection of hybrid cardiac perfusion defects as FBP at full dose. METHODS: One hundred and sixty-six patients, who underwent routine rest-stress Tc-99m sestamibi cardiac perfusion SPECT/CT imaging and clinically read as normally perfused, were included in the study. Ground truth was established by the normal read and the insertion of hybrid defects. In addition to the reconstruction of the 25% of full-dose data using OSEM with attenuation (AC), scatter (SC), and spatial resolution correction (RC), FBP and OSEM (with AC, SC, and RC) both at full dose (100%) were done. Both human observer and clinical model observer confidence scores were obtained to generate receiver operating characteristics (ROC) curves in a task-based image quality assessment. RESULTS: Average human observer AUC (area under the ROC curve) values of 0.725, 0.876, and 0.890 were obtained for FBP at full dose, OSEM at 25% of full dose, and OSEM at full dose, respectively. Both OSEM strategies were significantly better than FBP with P values of 0.003 and 0.01 respectively, while no significant difference was recorded between OSEM methods (P = 0.48). The clinical model observer results were 0.791, 0.822, and 0.879, respectively, for the same patient cases and processing strategies used in the human observer study. CONCLUSIONS: Cardiac perfusion SPECT/CT using OSEM reconstruction at 25% of full dose has AUCs larger than FBP and closer to those of full-dose OSEM when read by human observers, potentially replacing the higher dose studies during clinical reading.


Asunto(s)
Imagen de Perfusión Miocárdica/métodos , Radiofármacos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Tecnecio Tc 99m Sestamibi , Adulto , Anciano , Anciano de 80 o más Años , Fraccionamiento de la Dosis de Radiación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos , Adulto Joven
3.
J Nucl Cardiol ; 27(1): 80-95, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-28432671

RESUMEN

BACKGROUND: Respiratory motion can deteriorate image fidelity in cardiac perfusion SPECT. We determined the extent of respiratory motion, assessed its impact on image fidelity, and investigated the existence of gender differences, thereby examining the influence of respiratory motion in a large population of patients. METHODS: One thousand one hundred and three SPECT/CT patients underwent visual tracking of markers on their anterior surface during stress acquisition to track respiratory motion. The extent of motion was estimated by registration. Visual indicators of changes in cardiac slices with motion correction, and the correlation between the extent of motion with changes in segmental-counts were assessed. RESULTS: Respiratory motion in the head-to-feet direction was the largest component of motion, varying between 1.1 and 37.4 mm, and was statistically significantly higher (p = 0.002) for males than females. In 33.0% of the patients, motion estimates were larger than 10 mm. Patients progressively show more distinct visual changes with an increase in the extent of motion. The increase in segmental-count differences in the anterior, antero-lateral, and inferior segments correlated with the extent of motion. CONCLUSIONS: Respiratory motion correction diminished the artefactual reduction in anterior and inferior wall counts associated with respiratory motion. The extent of improvement was strongly related to the magnitude of motion.


Asunto(s)
Artefactos , Cardiopatías/diagnóstico por imagen , Imagen de Perfusión Miocárdica , Mecánica Respiratoria/fisiología , Tomografía Computarizada de Emisión de Fotón Único , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Cardiopatías/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Radiofármacos , Factores Sexuales , Tecnecio Tc 99m Sestamibi , Adulto Joven
4.
Front Cardiovasc Med ; 5: 76, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29971239

RESUMEN

Background: Epicardial adipose tissue (EAT) has been associated with adverse left atrial (LA) remodeling and atrial fibrillation (AF) outcomes, possibly because of paracrine signaling. Objectives: We examined factors associated with a novel measure of EAT i.e., indexed LAEAT (iLAEAT) and its prognostic significance after catheter ablation (CA) of atrial fibrillation (AF). Methods: We performed a retrospective analysis of 274 participants with AF referred for CA. LAEAT area was measured from a single pre-ablation CT image and indexed to body surface area (BSA) to calculate iLAEAT. Clinical, echocardiographic data and 1-year AF recurrence rates after CA were compared across tertiles of iLAEAT. We performed logistic regression analysis adjusting for factors associated with AF to examine relations between iLAEAT and AF recurrence. Results: Mean age of participants was 61 ± 10 years, 136 (49%) were women, mean BMI was 32 ± 9 kg/m2 and 85 (31%) had persistent AF. Mean iLAEAT was 0.82 ± 0.53 cm2/m2. Over 12-months, 109 (40%) had AF recurrence. Participants in the highest iLAEAT tertile were older, had higher CHA2DS2VASC scores, more likely to be male, have greater LA volume, and were more likely to have persistent (vs. paroxysmal) type AF than participants in the lowest iLAEAT tertile (p for all < 0.05). In regression analyses, iLAEAT was associated with higher odds of AF recurrence (OR = 2.93; 95% CI 1.34-6.43). Conclusions: iLAEAT can quantify LA adipose tissue burden using standard CT images. It is strongly associated with AF risk factors and outcomes, supporting the hypothesis that EAT plays a role in the pathophysiology of AF.

7.
Echocardiography ; 24(10): 1073-80, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18001361

RESUMEN

BACKGROUND: Patient selection, often restricted to those with ideal image quality, and timing of studies in relation to reference methods may limit clinical applicability of cardiac volumes derived from 3D echocardiography. METHODS: To test the influence of image quality on LV volumes by real time 3DE (RT3DE), we compared results obtained by RT3DE to those from gated-SPECT imaging in 64 consecutive patients referred for clinically indicated nuclear perfusion imaging. To minimize hemodynamic effects, RT3DE was performed immediately following G-SPECT. LV volumes by RT3DE were calculated using at least three orthogonal plane pairs. Image quality was rated as good if 75-100% of the endocardial border was visualized, fair if 60-74% was visualized, and poor if 50-60% was visualized. RESULTS: Image quality was good in 25 (39%), fair in 20 (31%), and poor in 13 (20%) patients. Six patients (9%) were excluded for uninterpretable echo images. For the entire cohort, EDV and ESV agreed closely (all P = NS). When stratified by image quality, the EDV and ESV of those with good and fair image quality agreed closely with minimal bias (average 1 +/- 9 mL and 2 +/- 7 mL, respectively). Poor image was associated with less strong agreement and much greater bias for EDV and ESV (7 +/- 25 mL and 7 +/- 20 mL, respectively). CONCLUSIONS: When applied to patients studied in routine clinical practice, LV volumes by RT3DE compare favorably to G-SPECT. RT3DE results are more reliable when >60% of endocardium is visualized.


Asunto(s)
Volumen Cardíaco/fisiología , Ecocardiografía Tridimensional/métodos , Imagen de Acumulación Sanguínea de Compuerta/métodos , Cardiopatías/diagnóstico , Ventrículos Cardíacos/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Femenino , Cardiopatías/fisiopatología , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Selección de Paciente , Reproducibilidad de los Resultados
9.
J Nucl Cardiol ; 13(3): 354-61, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16750780

RESUMEN

BACKGROUND: Dynamic single photon emission computed tomography (SPECT) acquisition and reconstruction of early poststress technetium 99m teboroxime washout images has been shown to be useful in the detection of coronary disease. Assessment of poststress regional wall motion may offer additional use in assessing coronary disease. Our goal was to investigate the feasibility of simultaneously imaging myocardial ischemia and transient poststress akinesis using gated-dynamic SPECT. METHODS AND RESULTS: A gated-dynamic mathematical cardiac torso (MCAT) phantom was developed to model both teboroxime kinetics and cardiac regional wall motion. A lesion was simulated as having delayed poststress teboroxime washout together with a transient poststress wall motion abnormality. Gated projection data were created to represent a 3-headed SPECT system undergoing a total rotation of 480 degrees . The dynamic expectation-maximization reconstruction algorithm with postsmoothing across gating intervals by Wiener filtering, and the ordered-subset expectation maximization reconstruction algorithm with 3-point smoothing across gating intervals were compared. Compared with the ordered-subset expectation maximization with 3-point smoothing, the dynamic expectation-maximization algorithm with Wiener filtering was able to produce visually higher-quality images and more accurate left ventricular ejection fraction estimates. CONCLUSION: From simulations, we conclude that changing cardiac function and tracer localization possibly can be assessed by using a gated-dynamic acquisition protocol combined with a 5-dimensional reconstruction strategy.


Asunto(s)
Miocardio/patología , Compuestos de Organotecnecio , Oximas , Perfusión , Radiofármacos , Algoritmos , Ventrículos Cardíacos/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Cinética , Modelos Teóricos , Fantasmas de Imagen , Factores de Tiempo , Tomografía Computarizada de Emisión de Fotón Único/instrumentación , Tomografía Computarizada de Emisión de Fotón Único/métodos
10.
J Nucl Cardiol ; 12(3): 284-93, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15944533

RESUMEN

BACKGROUND: Past receiver operating characteristic (ROC) studies have demonstrated that single photon emission computed tomography (SPECT) perfusion imaging by use of iterative reconstruction with combined compensation for attenuation, scatter, and detector response leads to higher area under the ROC curve (A(z)) values for detection of coronary artery disease (CAD) in comparison to the use of filtered backprojection (FBP) with no compensations. A new ROC study was conducted to investigate whether this improvement still holds for iterative reconstruction when observers have available all of the imaging information normally presented to clinical interpreters when reading FBP SPECT perfusion slices. METHODS AND RESULTS: A total of 87 patient studies including 50 patients referred for angiography and 37 patients with a lower than 5% likelihood for CAD were included in the ROC study. The images from the two methods were read by 4 cardiology fellows and 3 attending nuclear cardiologists. Presented for the FBP readings were the short-axis, horizontal long-axis, and vertical long-axis slices for both the stress and rest images; cine images of both the stress and rest projection data; cine images of selected cardiac-gated slices; the CEQUAL-generated stress and rest polar maps; and an indication of patient gender. This was compared with reading solely the iterative reconstructed stress slices with combined compensation for attenuation, scatter, and resolution. With A(z) as the criterion, a 2-way analysis of variance showed a significant improvement in detection accuracy for CAD for the 7 observers (P = .018) for iterative reconstruction with combined compensation (A(z) of 0.895 +/- 0.016) over FBP even with the additional imaging information provided to the observers when scoring the FBP slices (A(z) of 0.869 +/- 0.030). When the groups of 3 attending physicians or 4 cardiology fellows were compared separately, the iterative technique was not statistically significantly better; however, the A(z) for each of the 7 observers individually was larger for iterative reconstruction than for FBP. Compared with results from our previous studies, the additional imaging information did increase the diagnostic accuracy of FBP for CAD but not enough to undo the statistically significantly higher diagnostic accuracy of iterative reconstruction with combined compensation. CONCLUSIONS: We have determined through an ROC investigation that included two classes of observers (experienced attending physicians and cardiology fellows in training) that iterative reconstruction with combined compensation provides statistically significantly better detection accuracy (larger A(z)) for CAD than FBP reconstructions even when the FBP studies were read with all of the extra clinical nuclear imaging information normally available.


Asunto(s)
Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Curva ROC , Tomografía Computarizada de Emisión de Fotón Único/métodos , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Pronóstico , Reproducibilidad de los Resultados
11.
J Nucl Med ; 44(11): 1725-34, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14602852

RESUMEN

UNLABELLED: Nonuniform attenuation, scatter, and distance-dependent resolution are confounding factors inherent in SPECT imaging. Iterative reconstruction algorithms permit modeling and compensation of these degradations. We investigated through human-observer receiver-operating-characteristic (ROC) studies which (if any) combination of such compensation strategies best improves the accuracy of detection of coronary artery disease (CAD) when expert readers have only stress images for diagnosis. METHODS: A 3-headed SPECT system fitted with a (153)Gd line source was used to acquire simultaneously (99m)Tc-methoxyisobutylisonitrile (MIBI) images and transmission data. With these acquisitions, the accuracy of detecting CAD was evaluated for the following reconstruction strategies: filtered backprojection (FBP); ordered-subset expectation maximization (OSEM) with attenuation correction (AC); OSEM with AC and scatter correction (SC) (AC + SC); and OSEM with AC, SC, and resolution compensation (RC) (AC + SC + RC). Reconstruction parameters for OSEM were optimized by use of human-observer ROC studies with hybrid images, whereas standard clinical parameters were used for FBP. A total of 100 patients, including 55 patients referred for angiography and 45 patients with <5% likelihood for CAD, were included in the ROC studies. Images reconstructed with the 4 methods were rated independently with regard to the presence of CAD by 7 observers using a continuous scale for certainty. RESULTS: With area under the ROC curve (A(z)) as the criterion, the iterative reconstructions with compensation strategies (AC, AC + SC, and AC + SC + RC) demonstrated better detection accuracy than did FBP reconstructions for the overall detection of CAD as well as for the localization of perfusion defects in the 3 vascular territories. In general, the trend was for an increase in the A(z) for the progression from FBP to OSEM with AC, to OSEM with AC + SC, and to OSEM with AC + SC + RC. Statistically, the combination strategy with AC + SC + RC provided significantly higher A(z) values than did FBP images for the overall detection of CAD and the localization of perfusion defects in the left anterior descending coronary artery and left circumflex coronary artery territories, whereas AC + SC provided significantly better performance in the right coronary artery territory. CONCLUSION: The results indicate that OSEM with AC + SC + RC outperforms FBP reconstructions, indicating that the modeling of physical degradations can improve the accuracy of detection of CAD with cardiac perfusion SPECT reconstructions.


Asunto(s)
Corazón/diagnóstico por imagen , Curva ROC , Tecnecio Tc 99m Sestamibi , Tomografía Computarizada de Emisión de Fotón Único , Circulación Coronaria , Femenino , Humanos , Masculino , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...