Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
PeerJ ; 9: e11247, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34055477

RESUMEN

The EU-water framework directive (WFD) focuses on nutrient reductions to return coastal waters to the good ecological status. As of today, many coastal waters have reached a steady state of insufficient water quality due to continuous external nutrient inputs and internal loadings. This study focuses first on the current environmental status of mesohaline inner coastal waters to illustrate their needs of internal measures to reach demanded nutrient reductions and secondly, if mussel cultivation can be a suitable strategy to improve water quality. Therefore, nitrogen, phosphorus, chlorophyll a, and Secchi depth of nine mesohaline inner coastal waters in north east Germany were analyzed from 1990 to 2018. Two pilot mussel farms were used to evaluate their effectiveness as a mitigation measure and to estimate potential environmental risks, including the interactions with pathogenic vibrio bacteria. Further, estimated production and mitigation potential were used to assess economic profitability based on the sale of small sized mussels for animal feed and a compensation for nutrient mitigation. The compensation costs were derived from nutrient removal costs of a waste water treatment plant (WWTP). Results show that currently all nine water bodies do not reach the nutrient thresholds demanded by the WFD. However, coastal waters differ in nutrient pollution, indicating that some can reach the desired threshold values if internal measures are applied. The mitigation potential of mussel cultivation depends on the amount of biomass that is cultivated and harvested. However, since mussel growth is closely coupled to the salinity level, mussel cultivation in low saline environments leads to lower biomass production and inevitably to larger cultivation areas. If 50% of the case study area Greifswald Bay was covered with mussel farms the resulting nitrogen reduction would increase Secchi depth by 7.8 cm. However, high chlorophyll a values can hamper clearance rates (<20 mg m-3 = 0.43 l h-1 dry weight g-1) and therefore the mitigation potential. Also, the risk of mussel stock loss due to high summer water temperatures might affect the mitigation potential. The pilot farms had no significant effect on the total organic content of sediments beneath. However, increased values of Vibrio spp. in bio deposits within the pilot farm (1.43 106 ± 1.10 106CFU 100 ml-1 (reference site: 1.04 106 ± 1.45 106 CFU 100 ml-1) were measured with sediment traps. Hence, mussel farms might act as a sink for Vibrio spp. in systems with already high vibrio concentrations. However, more research is required to investigate the risks of Vibrio occurrence coupled to mussel farming. The economic model showed that mussel cultivation in environments below 12 PSU cannot be economic at current market prices for small size mussels and compensations based on nutrient removal cost of WWTPs.

2.
Sci Total Environ ; 785: 147276, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957594

RESUMEN

Ground- and surface-water-fed peatlands (i.e., fens) of temperate Europe face high anthropogenic nutrient loads from atmospheric deposition, agricultural catchment areas, and from peat decomposition, if drained. As a result, nitrogen loads may exceed a fen's natural nutrient removal capacity, leading to increased eutrophication of adjacent water bodies. Therefore, it is important to address possible means to decrease a fen's nutrient load, including nutrient uptake by fen plants. To assess how much fen plants can contribute to nutrient removal by uptake, nutrient stocks of above- and below-ground biomass need to be quantified. Therefore, we investigated nitrogen, phosphorous, and potassium uptake capacities of sedges (Carex species), which are common dominants in fen plant communities. We grew specimens of five Carex species with varying preferences in nutrient availability under controlled, different nutrient levels. We show that Carex above-ground biomass harvest can remove up to one third of a system's total nitrogen even at high loads of about 40 g nitrogen m-2. Species-specific differences in biomass production, rather than preferences in nutrient availability under natural conditions, were drivers of standing nutrient stocks: Highly productive species, i.e., C. acutiformis and C. rostrata, had highest nutrient standing stocks across all nutrient levels. Amounts of nutrients stored in shoots increased almost linearly with increasing nutrient levels, whereas below-ground nutrient stocks species-specifically increased, saturated, or decreased, with increasing nutrient levels. As a rough estimate, depending on the species, 6-16 cycles of annual above-ground harvest would suffice to decrease nitrogen concentrations from the highest to the lowest level used in this study. Overall, our results indicate that Carex biomass harvest can be an efficient means to counteract anthropogenic nitrogen eutrophication in fens.


Asunto(s)
Carex (Planta) , Biomasa , Ecosistema , Europa (Continente) , Eutrofización , Nitrógeno/análisis , Nutrientes , Fósforo
3.
Front Microbiol ; 8: 1312, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28751881

RESUMEN

Eelgrass (Zostera marina) is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community) which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes) as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

4.
J Phycol ; 45(5): 995-1002, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27032343

RESUMEN

Charophytes produce a thick-walled zygote, the so-called oospore, the characters of which (size, shape, and structure) are used as taxonomic determination criteria. In the present study, the variation of length, width, length-to-width ratio, and number of striae of oospores collected both from the field and after cross-fertilization experiments was compared within and among taxa, populations, and individuals belonging to the Chara baltica Bruzelius "species complex." Although the oospore characteristics differed significantly among the taxa, the variations among populations belonging to the same taxon and even among individuals belonging to the same population were still higher. Oospores developed by means of allogamy were not significantly different from oospores developed by autogamy. Oospores were 5% shorter and 27% narrower when measured dry compared with wet material. Information about this treatment is unfortunately lacking in charophyte monographs and oospore determination keys. We concluded that oospore descriptions of different charophyte taxa should be based on a larger amount of data material collected from different populations and individuals and accompanied by a detailed method description, and that a determination of closely related taxa by means of oospores should be interpreted carefully. Ecological aspects of oospore size variation are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...