Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Nat Mater ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317816

RESUMEN

Ultrafast stimuli can stabilize metastable states of matter inaccessible by equilibrium means. Establishing the spatiotemporal link between ultrafast excitation and metastability is crucial to understand these phenomena. Here we utilize single-shot optical pump-X-ray probe measurements to capture snapshots of the emergence of a persistent polar vortex supercrystal in a heterostructure that hosts a fine balance between built-in electrostatic and elastic frustrations by design. By perturbing this balance with photoinduced charges, an initially heterogeneous mixture of polar phase disorders within a few picoseconds, leading to a state composed of disordered ferroelectric and suppressed vortex orders. On the picosecond-nanosecond timescales, transient labyrinthine fluctuations develop, accompanied by the recovery of the vortex order. On longer timescales, these fluctuations are progressively quenched by dynamical strain modulations, which drive the collective emergence of a single vortex supercrystal phase. Our results, corroborated by dynamical phase-field modelling, reveal non-equilibrium pathways following the ultrafast excitation of designer systems to persistent metastability.

2.
J Cell Mol Med ; 28(11): e18466, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847482

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome characterized by pulmonary and systemic congestion resulting from left ventricular diastolic dysfunction and increased filling pressure. Currently, however, there is no evidence on effective pharmacotherapy for HFpEF. In this study, we aimed to investigate the therapeutic effect of total xanthones extracted from Gentianella acuta (TXG) on HFpEF by establishing an high-fat diet (HFD) + L-NAME-induced mouse model. Echocardiography was employed to assess the impact of TXG on the cardiac function in HFpEF mice. Haematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichrome staining were utilized to observe the histopathological changes following TXG treatment. The results demonstrated that TXG alleviated HFpEF by reducing the expressions of genes associated with myocardial hypertrophy, fibrosis and apoptosis. Furthermore, TXG improved cardiomyocyte apoptosis by inhibiting the expression of apoptosis-related proteins. Mechanistic investigations revealed that TXG could activate the inositol-requiring enzyme 1α (IRE1α)/X-box-binding protein 1 (Xbp1s) signalling pathway, but the knockdown of IRE1α using the IRE1α inhibitor STF083010 or siRNA-IRE1α impaired the ability of TXG to ameliorate cardiac remodelling in HFpEF models. In conclusion, TXG alleviates myocardial hypertrophy, fibrosis and apoptosis through the activation of the IRE1α/Xbp1s signalling pathway, suggesting its potential beneficial effects on HFpEF patients.


Asunto(s)
Apoptosis , Endorribonucleasas , Insuficiencia Cardíaca , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Proteína 1 de Unión a la X-Box , Xantonas , Animales , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Ratones , Masculino , Xantonas/farmacología , Xantonas/aislamiento & purificación , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Dieta Alta en Grasa/efectos adversos , Fibrosis , Volumen Sistólico/efectos de los fármacos
3.
J Exp Bot ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824403

RESUMEN

Rapeseed (Brassica napus) is an important oilseed crop worldwide. Plant vascular tissues are responsible for material transport and provide mechanical support. The lateral roots (LRs) absorb sufficient water and nutrients. The genetic basis of vascular tissues and LRs development in rapeseed remains unknown. This study characterized an EMS-mutagenized rapeseed mutant, T16, which showed dwarf stature, reduced LRs, and leaf wilting. Scanning electron microscopy observations showed that the internode-cell shortened. Observations of the tissue sections revealed defects in the development of vascular bundles in the stems and petioles. Genetic analysis revealed that the phenotypes of T16 were controlled by a single semi-dominant nuclear gene. Map-based cloning and genetic complementarity confirmed that BnaA03.IAA13 is the functional gene, a G-to-A mutation in second exon changed the glycine at the 79th position to glutamic acid, disrupting the conserved degron motif VGWPP. Transcriptome analysis in roots and stems showed that auxin and cytokinin signaling pathways were disordered in T16. Evolutionary analysis showed that AUXIN/INDOLE-3-ACETIC ACID was conserved during plant evolution. The heterozygote of T16 significantly reduced the plant height while maintaining other agronomic traits. Our findings provide novel insights into the regulatory mechanisms of vascular tissues and LRs development, and provide a new germplasm resource for rapeseed breeding.

4.
Waste Manag ; 185: 43-54, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38820783

RESUMEN

Plastics within municipal solid waste (MSW) are non-degradable. As MSW continues to degrade, the relative content of plastics rises, and particle gradation may also change. Moreover, throughout the landfilling process, MSW is subjected to various stress conditions, potentially influencing its mechanical properties. This study explored the effects of varying plastic contents, different particle gradations, and distinct stress paths on the mechanical properties of MSW, and consolidated drained triaxial tests of 42 groups of reconstituted MSW specimens were conducted. The results showed that there was an optimal plastic content of 6-9 % for MSW, where the shear strength of MSW was higher than that of MSW with other plastic contents. When the stress path changed from TC45 to TC72, the optimal plastic content of MSW changed from 6 % to 9 %. As the plastic content increased, both the cohesion and internal friction angle of the MSW initially increased, then subsequently decreased. The impact of plastic content on cohesion was more pronounced than on the internal friction angle, especially at larger strains. Under various stress paths, MSW with distinct particle size distributions demonstrated diverse stress-strain behaviors. Traditional criteria for evaluating well-graded conditions in soils are not suitable for MSW. The effect of gradation on the cohesion of MSW is essentially due to the predominant role of fiber content; the relationship between gradation and the internal friction angle in MSW is complex and correlates closely with the content of both coarse and fine particles, as well as fibers. This study serves as an essential reference for predicting deformations in landfills and analyzing the stability of landfill slopes.


Asunto(s)
Plásticos , Eliminación de Residuos , Residuos Sólidos , Residuos Sólidos/análisis , Eliminación de Residuos/métodos , Estrés Mecánico , Tamaño de la Partícula , Resistencia al Corte , Instalaciones de Eliminación de Residuos
5.
Plant Sci ; 345: 112116, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750797

RESUMEN

Self-incompatibility (SI) is an important genetic mechanism exploited by numerous angiosperm species to prevent inbreeding. This mechanism has been widely used in the breeding of SI trilinear hybrids of Brassica napus. The SI responses in these hybrids can be overcome by using a salt (NaCl) solution, which is used for seed propagation in SI lines. However, the mechanism underlying the NaCl-induced breakdown of the SI response in B. napus remains unclear. Here, we investigated the role of two key proteins, BnaPLDα1 and BnaMPK6, in the breakdown of SI induced by NaCl. Pollen grain germination and seed set were reduced in BnaPLDα1 triple mutants following incompatible pollination with NaCl treatment. Conversely, SI responses were partially abolished by overexpression of BnaC05.PLDα1 without salt treatment. Furthermore, we observed that phosphatidic acid (PA) produced by BnaPLDα1 bound to B. napus BnaMPK6. The suppression and enhancement of the NaCl-induced breakdown of the SI response in B. napus were observed in BnaMPK6 quadruple mutants and BnaA05.MPK6 overexpression lines, respectively. Moreover, salt-induced stigmatic reactive oxygen species (ROS) accumulation had a minimal effect on the NaCl-induced breakdown of the SI response. In conclusion, our results demonstrate the essential role of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response to salt treatment in SI B. napus. Additionally, our study provides new insights into the relationship between SI signaling and salt stress response. SIGNIFICANCE STATEMENT: A new molecular mechanism underlying the breakdown of the NaCl-induced self-incompatibility (SI) response in B. napus has been discovered. It involves the induction of BnaPLDα1 expression by NaCl, followed by the activation of BnaMPK6 through the production of phosphatidic acid (PA) by BnaPLDα1. Ultimately, this pathway leads to the breakdown of SI. The involvement of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response following NaCl treatment provides new insights into the relationship between SI signalling and the response to salt stress.


Asunto(s)
Brassica napus , Proteínas de Plantas , Cloruro de Sodio , Brassica napus/genética , Brassica napus/fisiología , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Autoincompatibilidad en las Plantas con Flores/genética , Regulación de la Expresión Génica de las Plantas , Polinización
6.
Plant J ; 119(3): 1258-1271, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38804089

RESUMEN

The successful interaction between pollen and stigma is a critical process for plant sexual reproduction, involving a series of intricate molecular and physiological events. After self-compatible pollination, a significant reduction in reactive oxygen species (ROS) production has been observed in stigmas, which is essential for pollen grain rehydration and subsequent pollen tube growth. Several scavenging enzymes tightly regulate ROS homeostasis. However, the potential role of these ROS-scavenging enzymes in the pollen-stigma interaction in Brassica napus remains unclear. Here, we showed that the activity of ascorbate peroxidase (APX), an enzyme that plays a crucial role in the detoxification of hydrogen peroxide (H2O2), was modulated depending on the compatibility of pollination in B. napus. We then identified stigma-expressed APX1s and generated pentuple mutants of APX1s using CRISPR/Cas9 technology. After compatible pollination, the BnaAPX1 pentuple mutants accumulated higher levels of H2O2 in the stigma, while the overexpression of BnaA09.APX1 resulted in lower levels of H2O2. Furthermore, the knockout of BnaAPX1 delayed the compatible response-mediated pollen rehydration and germination, which was consistent with the effects of a specific APX inhibitor, ρ-Aminophenol, on compatible pollination. In contrast, the overexpression of BnaA09.APX1 accelerated pollen rehydration and germination after both compatible and incompatible pollinations. However, delaying and promoting pollen rehydration and germination did not affect the seed set after compatible and incompatible pollination in APX1 pentuple mutants and overexpression lines, respectively. Our results demonstrate the fundamental role of BnaAPX1 in pollen rehydration and germination by regulating ROS homeostasis during the pollen-stigma interaction in B. napus.


Asunto(s)
Ascorbato Peroxidasas , Brassica napus , Proteínas de Plantas , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/genética , Brassica napus/genética , Brassica napus/fisiología , Brassica napus/enzimología , Brassica napus/metabolismo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación , Homeostasis , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/fisiología , Tubo Polínico/genética , Tubo Polínico/metabolismo , Polinización , Especies Reactivas de Oxígeno/metabolismo
7.
Stem Cell Res Ther ; 15(1): 95, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566259

RESUMEN

BACKGROUND: Human adipose stromal cells-derived extracellular vesicles (haMSC-EVs) have been shown to alleviate inflammation in acute lung injury (ALI) animal models. However, there are few systemic studies on clinical-grade haMSC-EVs. Our study aimed to investigate the manufacturing, quality control (QC) and preclinical safety of clinical-grade haMSC-EVs. METHODS: haMSC-EVs were isolated from the conditioned medium of human adipose MSCs incubated in 2D containers. Purification was performed by PEG precipitation and differential centrifugation. Characterizations were conducted by nanoparticle tracking analysis, transmission electron microscopy (TEM), Western blotting, nanoflow cytometry analysis, and the TNF-α inhibition ratio of macrophage [after stimulated by lipopolysaccharide (LPS)]. RNA-seq and proteomic analysis with liquid chromatography tandem mass spectrometry (LC-MS/MS) were used to inspect the lot-to-lot consistency of the EV products. Repeated toxicity was evaluated in rats after administration using trace liquid endotracheal nebulizers for 28 days, and respiratory toxicity was evaluated 24 h after the first administration. In vivo therapeutic effects were assessed in an LPS-induced ALI/ acute respiratory distress syndrome (ARDS) rat model. RESULTS: The quality criteria have been standardized. In a stability study, haMSC-EVs were found to remain stable after 6 months of storage at - 80°C, 3 months at - 20 °C, and 6 h at room temperature. The microRNA profile and proteome of haMSC-EVs demonstrated suitable lot-to-lot consistency, further suggesting the stability of the production processes. Intratracheally administered 1.5 × 108 particles/rat/day for four weeks elicited no significant toxicity in rats. In LPS-induced ALI/ARDS model rats, intratracheally administered haMSC-EVs alleviated lung injury, possibly by reducing the serum level of inflammatory factors. CONCLUSION: haMSC-EVs, as an off-shelf drug, have suitable stability and lot-to-lot consistency. Intratracheally administered haMSC-EVs demonstrated excellent safety at the tested dosages in systematic preclinical toxicity studies. Intratracheally administered haMSC-EVs improved the lung function and exerted anti-inflammatory effects on LPS-induced ALI/ARDS model rats.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Células Madre Mesenquimatosas , Síndrome de Dificultad Respiratoria , Humanos , Ratas , Animales , Cromatografía Liquida , Proteómica , Lipopolisacáridos/farmacología , Espectrometría de Masas en Tándem , Lesión Pulmonar Aguda/terapia , Síndrome de Dificultad Respiratoria/terapia , Obesidad , Control de Calidad , Vesículas Extracelulares/fisiología , Células Madre Mesenquimatosas/fisiología
8.
J Integr Plant Biol ; 66(3): 484-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38456625

RESUMEN

Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.


Asunto(s)
Brassica napus , Brassica napus/genética , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento , Genómica , Fenotipo
9.
Opt Lett ; 49(2): 206-209, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194529

RESUMEN

We demonstrate the suppression of inhomogeneous dephasing of cold 87Rb atoms optically trapped inside a hollow-core fiber. The differential light shift (DLS) for the clock transition caused by the trapping beam is reduced by one order of magnitude through the use of a weak compensation laser beam that is spatially mode-matched to the trapping beam. The coherence of the DLS-compensated system is characterized by microwave Ramsey interferometry, which shows Ramsey fringes with a contrast of over 0.6 at a separation time of 10 ms. The dephasing time, measured by Ramsey spectroscopy at different separation times, reaches tens of milliseconds after DLS cancellation, limited by the residual DLS caused by mode mismatching between the two laser beams. This work paves the way for compact and portable fiber-guided atom interferometers.

10.
New Phytol ; 241(4): 1690-1707, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037276

RESUMEN

Self-incompatibility plays a vital role in angiosperms, by preventing inbreeding depression and maintaining genetic diversity within populations. Following polyploidization, many angiosperm species transition from self-incompatibility to self-compatibility. Here, we investigated the S-locus in Brassicaceae and identified distinct origins for the sRNA loci, SMI and SMI2 (SCR Methylation Inducer 1 and 2), within the S-locus. The SMI loci were found to be widespread in Cruciferae, whereas the SMI2 loci were exclusive to Brassica species. Additionally, we discovered four major S-haplotypes (BnS-1, BnS-6, BnS-7, and BnS-1300) in rapeseed. Overexpression of BnSMI-1 in self-incompatible Brassica napus ('S-70S1300S6 ') resulted in a significant increase in DNA methylation in the promoter regions of BnSCR-6 and BnSCR-1300, leading to self-compatibility. Conversely, by overexpressing a point mutation of BnSmi-1 in the 'S-70S1300S6 ' line, we observed lower levels of DNA methylation in BnSCR-6 and BnSCR-1300 promoters. Furthermore, the overexpression of BnSMI2-1300 in the 'SI-326S7S6 ' line inhibited the expression of BnSCR-7 through transcriptional repression of the Smi2 sRNA from the BnS-1300 haplotype. Our study demonstrates that the self-compatibility of rapeseed is determined by S-locus sRNA-mediated silencing of SCR after polyploidization, which helps to further breed self-incompatible or self-compatible rapeseed lines, thereby facilitating the utilization of heterosis.


Asunto(s)
Brassica napus , Brassica , ARN Pequeño no Traducido , Brassica napus/genética , Brassica napus/metabolismo , Fitomejoramiento , Brassica/genética , Regiones Promotoras Genéticas/genética , ARN Pequeño no Traducido/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Curr Med Sci ; 43(5): 1043-1050, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37815743

RESUMEN

OBJECTIVE: Thrombotic thrombocytopenic purpura (TTP) is a rare and fatal disease caused by a severe deficiency in the metalloprotease ADAMTS13 and is characterized by thrombotic microangiopathy. The present study aimed to investigate the genes and variants associated with TTP in a Chinese population. METHODS: Target sequencing was performed on 220 genes related to complements, coagulation factors, platelets, fibrinolytic, endothelial, inflammatory, and anticoagulation systems in 207 TTP patients and 574 controls. Subsequently, logistic regression analysis was carried out to identify the TTP-associated genes based on the counts of rare deleterious variants in the region of a certain gene. Moreover, the associations between common variants and TTP were also investigated. RESULTS: ADAMTS13 was the only TTP-associated gene (OR = 3.77; 95% CI: 1.82-7.81; P=3.6×10È¡4) containing rare deleterious variants in TTP patients. Among these 8 variants, 5 novel rare variants that might contribute to TTP were identified, including rs200594025, rs782492477, c.T1928G (p.I643S), c.3336_3361del (p.Q1114Afs*20), and c.3469_3470del (p.A1158Sfs*17). No common variants associated with TTP were identified under the stringent criteria of correction for multiple testing. CONCLUSION: ADAMTS13 is the primary gene related to TTP. The genetic variants associated with the occurrence of TTP were slightly different between the Chinese and European populations.


Asunto(s)
Púrpura Trombocitopénica Trombótica , Humanos , Proteína ADAMTS13/genética , Pueblos del Este de Asia/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Púrpura Trombocitopénica Trombótica/etnología , Púrpura Trombocitopénica Trombótica/genética
12.
Sci Rep ; 13(1): 17896, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857780

RESUMEN

Dean's flow and Dean's instability have always been important concepts in the inertial microfluidics. Curved channels are widely used for applications like mixing and sorting but are limited to Dean's flow only. This work first reports the Dean's instability flow in high aspect ratio channels on the deka-microns level for [Formula: see text]. A new channel geometry (the tortuous channel), which creates a rolled-up velocity profile, is presented and studied experimentally and numerically along with other three typical channel geometries at Dean's flow condition and Dean's instability condition. The tortuous channel generates a higher De environment at the same Re compared to the other channels and allows easier Dean's instability creation. We further demonstrate the use of multiple vortexes for mixing. The mixing efficiency is considered among different channel patterns and the tortuous channel outperforms the others. This work offers more understanding of the creation of Dean's instability at high aspect ratio channels and the effect of channel geometry on it. Ultimately, it demonstrates the potential for applications like mixing and cell sorting.

13.
BMC Biol ; 21(1): 202, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775748

RESUMEN

BACKGROUND: Brassica napus is an important oilseed crop providing high-quality vegetable oils for human consumption and non-food applications. However, the regulation between embryo and seed coat for the synthesis of oil and phenylpropanoid compounds remains largely unclear. RESULTS: Here, we analyzed the transcriptomes in developing seeds at 2-day intervals from 14 days after flowering (DAF) to 64 DAF. The 26 high-resolution time-course transcriptomes are clearly clustered into five distinct groups from stage I to stage V. A total of 2217 genes including 136 transcription factors, are specifically expressed in the seed and show high temporal specificity by being expressed only at certain stages of seed development. Furthermore, we analyzed the co-expression networks during seed development, which mainly included master regulatory transcription factors, lipid, and phenylpropane metabolism genes. The results show that the phenylpropane pathway is prominent during seed development, and the key enzymes in the phenylpropane metabolic pathway, including TT5, BAN, and the transporter TT19, were directly or indirectly related to many key enzymes and transcription factors involved in oil accumulation. We identified candidate genes that may regulate seed oil content based on the co-expression network analysis combined with correlation analysis of the gene expression with seed oil content and seed coat content. CONCLUSIONS: Overall, these results reveal the transcriptional regulation between lipid and phenylpropane accumulation during B. napus seed development. The established co-expression networks and predicted key factors provide important resources for future studies to reveal the genetic control of oil accumulation in B. napus seeds.


Asunto(s)
Brassica napus , Transcriptoma , Humanos , Brassica napus/genética , Perfilación de la Expresión Génica , Aceites de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Semillas/genética , Regulación de la Expresión Génica de las Plantas
14.
Cell Death Discov ; 9(1): 279, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528096

RESUMEN

To date, there is no effective therapy for pathological cardiac hypertrophy, which can ultimately lead to heart failure. Bellidifolin (BEL) is an active xanthone component of Gentianella acuta (G. acuta) with a protective function for the heart. However, the role and mechanism of BEL action in cardiac hypertrophy remain unknown. In this study, the mouse model of cardiac hypertrophy was established by isoprenaline (ISO) induction with or without BEL treatment. The results showed that BEL alleviated cardiac dysfunction and pathological changes induced by ISO in the mice. The expression of cardiac hypertrophy marker genes, including ANP, BNP, and ß-MHC, were inhibited by BEL both in mice and in H9C2 cells. Furthermore, BEL repressed the epigenetic regulator bromodomain-containing protein 4 (BRD4) to reduce the ISO-induced acetylation of H3K122 and phosphorylation of RNA Pol II. The Nox4/ROS/ADAM17 signalling pathway was also inhibited by BEL in a BRD4 dependent manner. Thus, BEL alleviated cardiac hypertrophy and cardiac dysfunction via the BRD4/Nox4/ROS axes during ISO-induced cardiac hypertrophy. These findings clarify the function and molecular mechanism of BEL action in the therapeutic intervention of cardiac hypertrophy.

15.
Genes Genomics ; 45(12): 1611-1621, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37414912

RESUMEN

BACKGROUND: Phalaenopsis is an important ornamental plant that has great economic value in the world flower market as one of the most popular flower resources. OBJECTIVE: To investigate the flower colour formation of Phalaenopsis at the transcription level, the genes involved in flower color formation were identified from RNA-seq in this study. METHODS: In this study, white and purple petals of Phalaenopsis were collected and analyzed to obtained (1) differential expression genes (DEGs) between white and purple flower color and (2) the association between single nucleotide polymorphisms (SNP) mutations and DEGs at the transcriptome level. RESULTS: The results indicated that a total of 1,175 DEGs were identified, and 718 and 457 of them were up- and down-regulated genes, respectively. Gene Ontology and pathway enrichment showed that the biosynthesis of the secondary metabolites pathway was key to color formation, and the expression of 12 crucial genes (C4H, CCoAOMT, F3'H, UA3'5'GT, PAL, 4CL, CCR, CAD, CALDH, bglx, SGTase, and E1.11.17) that are involved in the regulation of flower color in Phalaenopsis. CONCLUSION: This study reported the association between the SNP mutations and DEGs for color formation at RNA level, and provides a new insight to further investigate the gene expression and its relationship with genetic variants from RNA-seq data in other species.


Asunto(s)
Orchidaceae , Orchidaceae/genética , Color , Polimorfismo de Nucleótido Simple , Perfilación de la Expresión Génica , Flores/genética , Flores/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(28): e2303312120, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37410867

RESUMEN

New properties and exotic quantum phenomena can form due to periodic nanotextures, including Moire patterns, ferroic domains, and topologically protected magnetization and polarization textures. Despite the availability of powerful tools to characterize the atomic crystal structure, the visualization of nanoscale strain-modulated structural motifs remains challenging. Here, we develop nondestructive real-space imaging of periodic lattice distortions in thin epitaxial films and report an emergent periodic nanotexture in a Mott insulator. Specifically, we combine iterative phase retrieval with unsupervised machine learning to invert the diffuse scattering pattern from conventional X-ray reciprocal-space maps into real-space images of crystalline displacements. Our imaging in PbTiO3/SrTiO3 superlattices exhibiting checkerboard strain modulation substantiates published phase-field model calculations. Furthermore, the imaging of biaxially strained Mott insulator Ca2RuO4 reveals a strain-induced nanotexture comprised of nanometer-thin metallic-structure wires separated by nanometer-thin Mott-insulating-structure walls, as confirmed by cryogenic scanning transmission electron microscopy (cryo-STEM). The nanotexture in Ca2RuO4 film is induced by the metal-to-insulator transition and has not been reported in bulk crystals. We expect the phasing of diffuse X-ray scattering from thin crystalline films in combination with cryo-STEM to open a powerful avenue for discovering, visualizing, and quantifying the periodic strain-modulated structures in quantum materials.


Asunto(s)
Películas Cinematográficas , Refracción Ocular , Aprendizaje Automático no Supervisado
17.
Mol Breed ; 43(4): 27, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37313529

RESUMEN

Pollen tube (PT) growth towards the micropyle is critical for successful double fertilization. However, the mechanism of micropyle-directed PT growth is still unclear in Brassica napus. In this study, two aspartate proteases, BnaAP36s and BnaAP39s, were identified in B. napus. BnaAP36s and BnaAP39s were localized to the plasma membrane. The homologues of BnaAP36 and BnaAP39 were highly expressed in flower organs, especially in the anther. Sextuple and double mutants of BnaAP36s and BnaAP39s were then generated using CRISPR/Cas9 technology. Compared to WT, the seed-set of cr-bnaap36 and cr-bnaap39 mutants was reduced by 50% and 60%, respectively. The reduction in seed-set was also found when cr-bnaap36 and cr-bnaap39 were used as the female parent in a reciprocal cross assay. Like WT, cr-bnaap36 and cr-bnaap39 pollen were able to germinate and the relative PTs were able to elongate in style. Approximately 36% and 33% of cr-bnaap36 and cr-bnaap39 PTs, respectively, failed to grow towards the micropyle, indicating that BnaAP36s and BnaAP39s are essential for micropyle-directed PT growth. Furthermore, Alexander's staining showed that 10% of cr-bnaap39 pollen grains were aborted, but not cr-bnaap36, suggesting that BnaAP39s may also affect microspore development. These results suggest that BnaAP36s and BnaAP39s play a critical role in the growth of micropyle-directed PTs in B. napus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01377-1.

18.
Plant Biotechnol J ; 21(8): 1611-1627, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37154465

RESUMEN

Plant hormones are the intrinsic factors that control plant development. The integration of different phytohormone pathways in a complex network of synergistic, antagonistic and additive interactions has been elucidated in model plants. However, the systemic level of transcriptional responses to hormone crosstalk in Brassica napus is largely unknown. Here, we present an in-depth temporal-resolution study of the transcriptomes of the seven hormones in B. napus seedlings. Differentially expressed gene analysis revealed few common target genes that co-regulated (up- and down-regulated) by seven hormones; instead, different hormones appear to regulate distinct members of protein families. We then constructed the regulatory networks between the seven hormones side by side, which allowed us to identify key genes and transcription factors that regulate the hormone crosstalk in B. napus. Using this dataset, we uncovered a novel crosstalk between gibberellin and cytokinin in which cytokinin homeostasis was mediated by RGA-related CKXs expression. Moreover, the modulation of gibberellin metabolism by the identified key transcription factors was confirmed in B. napus. Furthermore, all data were available online from http://yanglab.hzau.edu.cn/BnTIR/hormone. Our study reveals an integrated hormone crosstalk network in Brassica napus, which also provides a versatile resource for future hormone studies in plant species.


Asunto(s)
Brassica napus , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Brassica napus/metabolismo , Giberelinas/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hormonas/metabolismo , Citocininas/metabolismo
19.
J Exp Bot ; 74(17): 4994-5013, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37246599

RESUMEN

Cytokinins (CKs) are phytohormones that promote cell division and differentiation. However, the regulation of CK distribution and homeostasis in Brassica napus is poorly understood. Here, the endogenous CKs were first quantified by LC-ESI-MS/MS in rapeseed tissues and visualized by TCSn::GUS reporter lines. Interestingly, the cytokinin oxidase/dehydrogenase BnaCKX2 homologs were mainly expressed in reproductive organs. Subsequently, the quadruple mutants of the four BnaCKX2 homologs were generated. Endogenous CKs were increased in the seeds of the BnaCKX2 quadruple mutants, resulting in a significantly reduced seed size. In contrast, overexpression of BnaA9.CKX2 resulted in larger seeds, probably by delaying endosperm cellularization. Furthermore, the transcription factor BnaC6.WRKY10b, but not BnaC6.WRKY10a, positively regulated BnaA9.CKX2 expression by binding directly to its promoter region. Overexpression of BnaC6.WRKY10b rather than BnaC6.WRKY10a resulted in lower concentration of CKs and larger seeds by activating BnaA9.CKX2 expression, indicating that the functional differentiation of BnaWRKY10 homologs might have occurred during B. napus evolution or domestication. Notably, the haploid types of BnaA9.CKX2 were associated with 1000-seed weight in the natural B. napus population. Overall, the study reveals the distribution of CKs in B. napus tissues, and shows that BnaWRKY10-mediated BnaCKX2 expression is essential for seed size regulation, providing promising targets for oil crop improvement.


Asunto(s)
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Citocininas/metabolismo , Factores de Transcripción/metabolismo , Espectrometría de Masas en Tándem , Semillas/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Regulación de la Expresión Génica de las Plantas
20.
Epigenetics ; 18(1): 2175565, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36908025

RESUMEN

Platinum-based chemotherapy is one of the predominant strategies for treating ovarian cancer (OC), however, platinum resistance greatly influences the therapeutic effect. Circular RNAs (circRNAs) have been found to participate in the pathogenesis of platinum resistance. Our aim was to explore the involvement of circ_0078607 in OC cell cisplatin (DDP) resistance and its potential mechanisms. Circ_0078607, miR-196b-5p, and growth arrest-specific 7 (GAS7) levels were assessed by qPCR. Circ_0078607 stability was assessed by ribonuclease R digestion and actinomycin D treatment. Cell viability of various conic of DDP treatment was measured by CCK-8. The cell proliferation was determined by CCK-8 and colony formation assay. Western blotting was performed for determining GAS7, ABCB1, CyclinD1 and Bcl-2 protein levels. The direct binding between miR-196b-5p and circ_0078607 or GAS7 was validated by dual-luciferase reporter and RIP assay. DDP resistance in vivo was evaluated in nude mice. Immunohistochemistry staining for detecting Ki67 expression in xenograft tumours. Circ_0078607 and GAS7 was down-regulated, but miR-196b-5p was up-regulated in OC samples and DDP-resistant cells. Overexpression of circ_0078607 inhibited DDP resistance, cell growth and induced apoptosis in DDP-resistant OC cells. Mechanistically, circ_0078607 sequestered miR-196b-5p to up-regulate GAS7. MiR-196b-5p mimics reversed circ_0078607 or GAS7 overexpression-mediated enhanced sensitivity. Finally, circ_0078607 improved the sensitivity of DDP in vivo. Circ_0078607 attenuates DDP resistance via miR-196b-5p/GAS7 axis, which highlights the therapeutic potential of circ_0078607 to counter DDP resistance in OC.


Asunto(s)
MicroARNs , Proteínas del Tejido Nervioso , Neoplasias Ováricas , Platino (Metal) , ARN Circular , Animales , Femenino , Humanos , Ratones , Proliferación Celular , Cisplatino , Metilación de ADN , Resistencia a Antineoplásicos , Ratones Desnudos , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Platino (Metal)/farmacología , ARN Circular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...