Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cancer Biomark ; 39(4): 349-360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38250761

RESUMEN

GPX4 has attracted much attention as a key molecule of cell ferroptosis, but its role in cell apoptosis is rarely reported, and its role in apoptosis of thyroid cancer (TC) cell has not been reported. The analysis of TCGA database showed that both GPX4 and FKBP8 were highly expressed in TC tumor tissues; The expression of GPX4 and FKBP8 were positively correlated. The immunohistochemical analysis further confirmed that GPX4 and FKBP8 were highly expressed in TC tumor tissues. In addition, the high expression of GPX4 and FKBP8 were both significantly correlated with the poor prognosis of TC. Silencing GPX4 significantly inhibited the proliferation, induced apoptosis of TC cells, and reduced tumor growth in mice. The co-immunoprecipitation assay revealed a physical interaction between GPX4 and FKBP8 observed in the TC cells. Knockdown of FKBP8 significantly inhibited the proliferation and induced apoptosis of TC cells. Rescue experiments suggested that knockdown of FKBP8 could reverse the strengthens of cell proliferation and apoptosis and the higher expression of FKBP8 and Bcl-2 caused by overexpression of GPX4. Our results suggest that the GPX4/FKBP8/Bcl-2 axis promotes TC development by inhibiting TC cell apoptosis, which provides potential molecular targets for TC therapeutic strategies.


Asunto(s)
Apoptosis , Proliferación Celular , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas de Unión a Tacrolimus , Neoplasias de la Tiroides , Humanos , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/genética , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/genética , Ratones , Animales , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Línea Celular Tumoral , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Pronóstico , Transducción de Señal
2.
J Transl Med ; 20(1): 439, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180919

RESUMEN

BACKGROUND: Globally, gastric cancer is the third most common cancer and the third leading cause of cancer death. Proximal and distal gastric cancers have distinct clinical and biological behaviors. The microbial composition and metabolic differences in proximal and distal gastric cancers have not been fully studied and discussed. METHODS: In this study, the gastric microbiome of 13 proximal gastric cancer tissues, 16 distal gastric cancer tissues, and their matched non-tumor tissues were characterized using 16S rRNA amplicon sequencing. Additionally, 10 proximal gastric cancer tissues, 11 distal gastric cancer tissues, and their matched non-tumor tissues were assessed by untargeted metabolomics. RESULTS: There was no significant difference in microbial diversity and richness between the proximal and distal gastric cancer tissues. At the genus level, the abundance of Rikenellaceae_RC9_gut_group, Porphyromonas, Catonella, Proteus, Oribacterium, and Moraxella were significantly increased in Proximal T, whereas that of Methylobacterium_Methylorubrum was significantly increased in Distal T. The untargeted metabolomics analysis revealed 30 discriminative metabolites between Distal T and Distal N. In contrast, there were only 4 discriminative metabolites between Proximal T and Proximal N. In distal gastric cancer, different metabolites were scattered through multiple pathway, including the sphingolipid signaling pathway, arginine biosynthesis, protein digestion and absorption, alanine, aspartate and, glutamate metabolism, etc.In proximal gastric cancer, differential microbial metabolites were mainly related to hormone metabolism. CONCLUSION: Methylobacterium-Methylorubrum was significantly increased in Distal T, positively correlated with cancer-promoting metabolites, and negatively correlated with cancer-inhibiting metabolites. Rikenellaceae_RC_gut_group was significantly increased in Proximal T and positively correlated with cancer-promoting metabolites. Further studies regarding the functions of the above-mentioned microorganisms and metabolites were warranted as the results may reveal the different mechanisms underlying the occurrence and development of proximal and distal gastric cancers and provide a basis for future treatments. IMPORTANCE: First, the differences in microbial composition and metabolites between the proximal and distal gastric cancers were described; then, the correlation between microbiota and metabolites was preliminarily discussed. These microbes and metabolites deserve further investigations as they may reveal the different mechanisms involved in the occurrence and development of proximal and distal gastric cancers and provide a basis for future treatments.


Asunto(s)
Microbiota , Neoplasias Gástricas , Alanina , Arginina , Ácido Aspártico , Heces/microbiología , Glutamatos , Hormonas , Humanos , Metabolómica/métodos , ARN Ribosómico 16S/genética , Esfingolípidos
3.
Pathol Oncol Res ; 28: 1610267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685866

RESUMEN

Bladder cancer (BCa) is the tenth most common tumor in humans. DNA damage repair genes (DDRGs) play important roles in many malignant tumors; thus, their functions in BCa should also be explored. We performed a comprehensive analysis of the expression profiles of DDRGs in 410 BCa tumors and 19 normal tissues from The Cancer Genome Atlas database. We identified 123 DDRGs differentially expressed between BCa tumors and normal tissues, including 95 upregulated and 28 downregulated genes. We detected 22 DDRGs associated with overall survival (OS) of patients with BCa by performing univariate Cox regression analysis. To explore the interactions between OS-associated DDRGs, we constructed a PPI network, which showed that the top six DDRGs (CDCA2, FOXM1, PBK, RRM2, ORC1, and HDAC4) with the highest scores in the PPI network might play significant roles in OS of BCa. Moreover, to investigate the latent regulatory mechanism of these OS-associated DDRGs, we analyzed the transcription factors (TFs)-DDRGs regulatory network. The core seven TFs (NCAPG, DNMT1, LMNB1, BRCA1, E2H2, CENPA, and E2F7) were shown to be critical regulators of the OS-related DDRGs. The 22 DDRGs were incorporated into a stepwise multivariable Cox analysis. Then, we built the index of risk score based on the expression of 8 DDRGs (CAD, HDAC10, JDP2, LDLR, PDGFRA, POLA2, SREBF1, and STAT1). The p-value < 0.0001 in the Kaplan-Meier survival plot and an area under the ROC curve (AUC) of 0.771 in TCGA-BLCA training dataset suggested the high specificity and sensitivity of the prognostic index. Furthermore, we validated the risk score in the internal TCGA-BLCA and an independent GSE32894 dataset, with AUC of 0.743 and 0.827, respectively. More importantly, the multivariate Cox regression and stratification analysis demonstrated that the predictor was independent of various clinical parameters, including age, tumor stage, grade, and number of positive tumor lymph nodes. In summary, a panel of 8 DNA damage repair genes associated with overall survival in bladder cancer may be a useful prognostic tool.


Asunto(s)
Neoplasias de la Vejiga Urinaria , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Daño del ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Histona Desacetilasas/genética , Humanos , Pronóstico , Neoplasias de la Vejiga Urinaria/patología
4.
Pathol Oncol Res ; 27: 1610008, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955687

RESUMEN

Objective: The efficacy of anlotinib as a treatment for head-and-neck squamous cell carcinoma (HNSCC) has been little explored. Here, we used patient-derived xenografts (PDXs) to this end. Methods: Fresh tumor tissues of HNSCC patients were screened in terms of in vitro drug sensitivity using the MTT assay. Patient PDXs were used to confirm the anti-tumor effects of anlotinib in vivo. After the medication regimen was complete, the tumor volume changes in mice were calculated. Apoptosis was measured using the TUNEL assay. The cell proliferation and apoptosis levels of PDXs yielded data on the utility of anlotinib treatment in vivo. Results: Anlotinib suppressed the in vitro proliferation of nine tumor tissues by an average of 51.05 ± 13.74%. Anlotinib also significantly inhibited the growth of three PDXs in mice (tumor growth inhibition 79.02%). The expression levels of Ki-67 and proliferating cell nuclear antigen after anlotinib treatment were significantly lower than those in the controls. The negative and positive controls exhibited no and some apoptosis, respectively, whereas the anlotinib group evidenced extensive apoptosis. Conclusion: Anlotinib suppressed HNSCC growth in vitro and in vivo (by inhibiting cell proliferation and promoting apoptosis), suggesting that anlotinib can potentially treat HNSCC.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Indoles/uso terapéutico , Quinolinas/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Transl Med ; 19(1): 488, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34847917

RESUMEN

BACKGROUND: In recent years, the incidence rate of Thyroid carcinoma (TC) has been increasing worldwide. Thus, research on factors of TC carcinogenesis may promote TC prevention and decrease the incidence rate. There are several studies targeting the correlation between gut microbiota and thyroid disease. Carcinogenesis of several malignancies is influenced by microbiota. However, thyroid microbiome of TC has not been revealed. This study investigated thyroid microbiota in different TC microhabitats. METHODS: We performed 16s rRNA gene sequencing using tumor tissues and matched peritumor tissues from 30 patients with TC to characterize thyroid microbiota. RESULTS: The richness and diversity of thyroid microbiota were lower in TC tumor samples than in matched peritumor tissues. At the genus level, the core microbiota of thyroid included Sphingomonas, Comamonas, Acinetobacter, Pseudomonas, Microvirgula, and Soonwooa. The abundance of Sphingomonas and Aeromonas was significantly increased in tumor tissues, while the abundance of Comamonas, Acinetobacter, and Peptostreptococcus was significantly enhanced in peritumor tissues. The combination of Comamonas and Sphingomonas could discriminate tumor samples from peritumor samples with an area under the curve (AUC) of 0.981 (95% confidence interval [CI] 0.949-1.000). The abundance of Sphingomonas was significantly higher in N1 stage than in N0 stage. Sphingomonas could distinguish between N0 and N1 stage with an AUC of 0.964 (95% CI 0.907-1.000). CONCLUSIONS: The microbial diversity and composition were significantly different between peritumor and tumor microhabitats from patients with TC, which may eventually affect TC carcinogenesis and progression. The combination of Comamonas and Sphingomonas could serve as a powerful biomarker for discrimination between tumor and peritumor tissues. Furthermore, the higher abundance of Sphingomonas was correlated with lymph node metastasis, indicating that the abundance of Sphingomonas may indicate a poor prognosis for TC patients, and Sphingomonas may play a role in promoting TC progression.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Neoplasias de la Tiroides , Humanos , ARN Ribosómico 16S/genética
6.
Cell Death Dis ; 12(12): 1104, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819503

RESUMEN

The development and progression of gastric cancer (GC) is greatly influenced by gastric microbiota and their metabolites. Here, we characterized the gastric microbiome and metabolome profiles of 37 GC tumor tissues and matched non-tumor tissues using 16s rRNA gene sequencing and ultrahigh performance liquid chromatography tandem mass spectrometry, respectively. Microbial diversity and richness were higher in GC tumor tissues than in non-tumor tissues. The abundance of Helicobacter was increased in non-tumor tissues, while the abundance of Lactobacillus, Streptococcus, Bacteroides, Prevotella, and 6 additional genera was increased in the tumor tissues. The untargeted metabolome analysis revealed 150 discriminative metabolites, among which the relative abundance of the amino acids, carbohydrates and carbohydrate conjugates, glycerophospholipids, and nucleosides was higher in tumor tissues compared to non-tumor tissues. The targeted metabolome analysis further demonstrated that the combination of 1-methylnicotinamide and N-acetyl-D-glucosamine-6-phosphate could serve as a robust biomarker for distinction between GC tumors and non-tumor tissues. Correlation analysis revealed that Helicobacter and Lactobacillus were negatively and positively correlated with the majority of differential metabolites in the classes of amino acids, carbohydrates, nucleosides, nucleotides, and glycerophospholipids, respectively, suggesting that Helicobacter and Lactobacillus might play a role in degradation and synthesis of the majority of differential metabolites in these classes, respectively. Acinetobacter, Comamonas, Faecalibacterium, Sphingomonas, and Streptococcus were also significantly correlated with many differential amino acids, carbohydrates, nucleosides, nucleotides, and glycerophospholipids. In conclusion, the differences in metabolome profiles between GC tumor and matched non-tumor tissues may be partly due to the collective activities of Helicobacter, Lactobacillus, and other bacteria, which eventually affects GC carcinogenesis and progression.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Metaboloma/fisiología , Neoplasias Gástricas/fisiopatología , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Front Mol Biosci ; 8: 643504, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124144

RESUMEN

Introduction: Chronic rhinosinusitis (CRS) is often classified primarily on the basis of the absence or presence of nasal polyps (NPs), that is, as CRS with nasal polyps (CRSwNP) or CRS without nasal polyps (CRSsNP). Additionally, according to the percentage of eosinophils, CRSwNP can be further divided into eosinophilic CRSwNP (ECRSwNP) and non-ECRSwNP. CRSwNP is a significant public health problem with a considerable socioeconomic burden. Previous research reported that the pathophysiology of CRSwNP is a complex, multifactorial disease. There have been many studies on its etiology, but its pathogenesis remains unclear. Dysregulated expression of microRNAs (miRNAs) has been shown in psoriasis, rheumatoid arthritis, pulmonary fibrosis, and allergic asthma. Circular RNAs (circRNAs) are also involved in inflammatory diseases such as rheumatoid arthritis, septic acute kidney injury, myocardial ischemia/reperfusion injury, and sepsis-induced liver damage. The function of miRNAs in various diseases, including CRSwNP, is a research hotspot. In contrast, there have been no studies on circRNAs in CRSwNP. Overall, little is known about the functions of circRNAs and miRNAs in CRSwNP. This study aimed to investigate the expression of circRNAs and miRNAs in a CRSwNP group and a control group to determine whether these molecules are related to the occurrence and development of CRSwNP. Methods: Nine nasal mucosa samples were collected, namely, three ECRSwNP samples, three non-ECRSwNP samples, and three control samples, for genomic microarray analysis of circRNA and microRNA expression. All of the tissue samples were from patients who were undergoing functional endoscopic sinus surgery in our department. Then we selected some differentially expressed miRNAs and circRNAs for qPCR verification. Meanwhile, GO enrichment analysis and KEGG pathway analysis were applied to predict the biological functions of aberrantly expressed circRNAs and miRNAs based on the GO and KEGG databases. Receiver operating characteristic (ROC) curve analysis and principal component analysis (PCA) were performed to confirm these molecules are involved in the occurrence and development of CRSwNP. Results: In total, 2,875 circRNAs showed significant differential expression in the CRSwNP group. Specifically, 1794 circRNAs were downregulated and 1,081 circRNAs were upregulated. In the CRSwNP group, the expression of 192 miRNAs was significantly downregulated, and none of the miRNAs were significantly upregulated. GO and KEGG analysis showed differential circRNAs and miRNAs were enriched in "amoebiasis," "salivary secretion," "pathways in cancer," and "endocytosis." Through qRT-PCR verification, the expression profiles of hsa-circ-0031593, hsa-circ-0031594, hsa-miR-132-3p, hsa-miR-145-5p, hsa-miR-146a-5p, and hsa-miR-27b-3p were shown to have statistical differences. In addition, ROC curve analysis showed that the molecules with the two highest AUCs were hsa-circ-0031593 with AUC 0.8353 and hsa-miR-145-5p with AUC 0.8690. Through PCA with the six ncRNAs, the first principal component explained variance ratio was 98.87%. The AUC of the six ncRNAs was 0.8657. Conclusion: In our study, the expression profiles of ECRSwNP and non-ECRSwNP had no statistical differences. The differentially expressed circRNAs and miRNAs between CRSwNP and control may play important roles in the pathogenesis of CRSwNP. Altered expression of hsa-circ-0031593 and hsa-miR-145-5p have the strongest evidence for involvement in the occurrence and development of CRSwNP because their AUCs are higher than the other molecules tested in this study.

8.
Front Oncol ; 11: 657483, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996580

RESUMEN

Circulating tumor DNA (ctDNA) can be a prognostic biomarker for non-muscle-invasive bladder cancer (NMIBC); however, targeted sequencing has not been performed to detect ctDNA in NMIBC. We applied targeted sequencing based on an 861-gene panel to determine mutations in tumor tissue DNA and plasma ctDNA in 82 NMIBC patients receiving transurethral resection (TUR) of bladder followed by immunotherapy. We detected 476 and 165 somatic variants in tumor DNA from 82 NMIBC patients (100%) and ctDNA from 54 patients (65.85%), respectively. Patients with high heterogeneity in tumor DNA had a significantly shorter disease-free survival than those with low heterogeneity. Tumor-derived alterations were detectable in plasma of 43 patients (52.44%). The concordance of somatic variants between tumor DNA and plasma ctDNA were higher in patients with T1 stage (p < 0.0001) and tumor size ≥3 cm (p = 0.0002). Molecular tumor burden index (mTBI) in ctDNA positively correlated with larger tumor size (p = 0.0020). A higher mTBI was an independent predictor of recurrence after TUR of bladder followed by immunotherapy. Analysis of ctDNA based on targeted sequencing is a promising approach to predict disease recurrence for NMIBC patients receiving TUR of bladder followed by immunotherapy.

9.
Eur J Endocrinol ; 182(1): 111-121, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31721725

RESUMEN

CONTEXT: Exosomal miRNAs are considered potential non-invasive biomarkers for thyroid cancer. However, the global exosomal miRNAs profile for papillary thyroid cancer (PTC) has not been revealed. OBJECTIVE: This study investigated the diagnostic value of plasma and serum exosomal miRNAs for PTC. METHODS: Plasma and serum samples were collected from ten patients with benign thyroid nodules and 17 with PTC for small RNA sequencing. Plasma samples were collected from two independent cohorts, including 119 patients with PTC, 51 healthy people and 82 patients with benign thyroid nodules, for validation by quantitative reverse-transcription polymerase chain reaction (RT-qPCR). RESULTS: Small RNA sequencing identified 41 putative exosomal miRNA biomarkers for PTC. Twelve miRNAs were selected for validation. miR-376a-3p, miR-4306, miR-4433a-5p, and miR-485-3p expression significantly increased in patients with PTC compared to that in healthy people and patients with benign thyroid nodules (P ˂ 0.05). Moreover, miR-485-3p and miR-4433a-5p presented larger areas under the curve (AUCs). The high expression of exosomal miR-485-3p correlated with tumor size greater than or equal to 1 cm, advanced clinical stage, extrathyroidal extension, BRAF mutation, and lymph node metastasis. Besides, miR-485-3p exhibited the highest AUCs in diagnosing PTC patients with high-risk factors. CONCLUSIONS: Plasma exosomal miR-485-3p and miR-4433a-5p might serve as biomarkers for PTC diagnosis. Plasma exosomal miR-485-3p could enable discrimination between high-risk and low-risk PTC.


Asunto(s)
Biomarcadores de Tumor/sangre , MicroARNs/sangre , Cáncer Papilar Tiroideo/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Exosomas/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Análisis de Secuencia de ARN , Cáncer Papilar Tiroideo/genética , Nódulo Tiroideo/sangre , Nódulo Tiroideo/genética
10.
Front Microbiol ; 9: 2387, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30349518

RESUMEN

DNA sulfur modification is a unique modification occurring in the sugar-phosphate backbone of DNA, with a nonbridging oxygen atom substituted with sulfur in a sequence-specific and Rp stereo-specific manner. Bioinformatics, RNA-seq, and in vitro transcriptional analyses have shown that DNA sulfur modification may be involved in epigenetic regulation. However, the in vivo evidence supporting this assertion is not convincing. Here, we aimed to characterize two sulfur-modified sites near the dndB promoter region in Streptomyces lividans. Single mutation of either site had no effect on dndB transcription, whereas double mutation of both sites significantly elevated dndB expression. These findings suggested that DNA sulfur modification affected gene expression, and the role of DNA sulfur modification in epigenetic regulation depended on the number of sulfur-modified sites. We also identified an inverted repeat, the R repeat sequence, and showed that this sequence participated in the positive regulation of dndB gene expression.

11.
Front Microbiol ; 7: 1380, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27630631

RESUMEN

DNA phosphorothioation, conferred by dnd genes, was originally discovered in the soil-dwelling bacterium Streptomyces lividans, and thereafter found to exist in various bacterial genera. However, the physiological significance of this sulfur modification of the DNA backbone remains unknown in S. lividans. Our studies indicate that DNA phosphorothioation has a major role in resistance to oxidative stress in the strain. Although Streptomyces species express multiple catalase/peroxidase and organic hydroperoxide resistance genes to protect them against peroxide damage, a wild type strain of S. lividans exhibited two-fold to 10-fold higher survival, compared to a dnd (-) mutant, following treatment with peroxides. RNA-seq experiments revealed that, catalase and organic hydroperoxide resistance gene expression were not up-regulated in the wild type strain, suggesting that the resistance to oxidative stress was not due to the up-regulation of these genes by DNA phosphorothioation. Quantitative RT-PCR analysis was conducted to trace the expression of the catalase and the organic hydroperoxide resistance genes after peroxides treatments. A bunch of these genes were activated in the dnd (-) mutant rather than the wild type strain in response to peroxides. Moreover, the organic hydroperoxide peracetic acid was scavenged more rapidly in the presence than in the absence of phosphorothioate modification, both in vivo and in vitro. The dnd gene cluster can be up-regulated by the disulfide stressor diamide. Overall, our observations suggest that DNA phosphorothioate modification functions as a peroxide resistance system in S. lividans.

12.
Microb Cell Fact ; 12: 121, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24314013

RESUMEN

BACKGROUND: Polyoxin, a peptidyl nucleoside antibiotic, consists of three building blocks including a nucleoside skeleton, polyoximic acid (POIA), and carbamoylpolyoxamic acid (CPOAA), however, little is known about the "pathway redundancy" of the metabolic networks directing the CPOAA biosynthesis in the cell factories of the polyoxin producer. RESULTS: Here we report the genetic characterization of CPOAA biosynthesis with revealing a "pathway redundancy" in metabolic networks. Independent mutation of the four genes (polL-N and polP) directly resulted in the accumulation of polyoxin I, suggesting their positive roles for CPOAA biosynthesis. Moreover, the individual mutant of polN and polP also partially retains polyoxin production, suggesting the existence of the alternative homologs substituting their functional roles. CONCLUSIONS: It is unveiled that argA and argB in L-arginine biosynthetic pathway contributed to the "pathway redundancy", more interestingly, argB in S. cacaoi is indispensible for both polyoxin production and L-arginine biosynthesis. These data should provide an example for the research on the "pathway redundancy" in metabolic networks, and lay a solid foundation for targeted enhancement of polyoxin production with synthetic biology strategies.


Asunto(s)
Redes y Vías Metabólicas/genética , Ácido Oxámico/análogos & derivados , Secuencia de Aminoácidos , Simulación por Computador , Datos de Secuencia Molecular , Ácido Oxámico/metabolismo , Nucleósidos de Pirimidina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA