Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metabolism ; 149: 155695, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37802200

RESUMEN

BACKGROUND: Gestational diabetes (GDM) is a distinctive form of diabetes that first presents in pregnancy. While most women return to normoglycemia after delivery, they are nearly ten times more likely to develop type 2 diabetes than women with uncomplicated pregnancies. Current prevention strategies remain limited due to our incomplete understanding of the early underpinnings of progression. AIM: To comprehensively characterize the postpartum profiles of women shortly after a GDM pregnancy and identify key mechanisms responsible for the progression to overt type 2 diabetes using multi-dimensional approaches. METHODS: We conducted a nested case-control study of 200 women from the Study of Women, Infant Feeding and Type 2 Diabetes After GDM Pregnancy (SWIFT) to examine biochemical, proteomic, metabolomic, and lipidomic profiles at 6-9 weeks postpartum (baseline) after a GDM pregnancy. At baseline and annually up to two years, SWIFT administered research 2-hour 75-gram oral glucose tolerance tests. Women who developed incident type 2 diabetes within four years of delivery (incident case group, n = 100) were pair-matched by age, race, and pre-pregnancy body mass index to those who remained free of diabetes for at least 8 years (control group, n = 100). Correlation analyses were used to assess and integrate relationships across profiling platforms. RESULTS: At baseline, all 200 women were free of diabetes. The case group was more likely to present with dysglycemia (e.g., impaired fasting glucose levels, glucose tolerance, or both). We also detected differences between groups across all omic platforms. Notably, protein profiles revealed an underlying inflammatory response with perturbations in protease inhibitors, coagulation components, extracellular matrix components, and lipoproteins, whereas metabolite and lipid profiles implicated disturbances in amino acids and triglycerides at individual and class levels with future progression. We identified significant correlations between profile features and fasting plasma insulin levels, but not with fasting glucose levels. Additionally, specific cross-omic relationships, particularly among proteins and lipids, were accentuated or activated in the case group but not the control group. CONCLUSIONS: Overall, we applied orthogonal, complementary profiling techniques to uncover an inflammatory response linked to elevated triglyceride levels shortly after a GDM pregnancy, which is more pronounced in women who progress to overt diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Lactante , Embarazo , Femenino , Humanos , Niño , Estudios de Casos y Controles , Proteómica , Glucosa
2.
J Clin Endocrinol Metab ; 107(9): 2652-2665, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35666146

RESUMEN

CONTEXT: Prolactin is a multifaceted hormone known to regulate lactation. In women with gestational diabetes mellitus (GDM) history, intensive lactation has been associated with lower relative risk of future type 2 diabetes (T2D). However, the role of prolactin in T2D development and maternal metabolism in women with a recent GDM pregnancy has not been ascertained. OBJECTIVE: We examined the relationships among prolactin, future T2D risk, and key clinical and metabolic parameters. METHODS: We utilized a prospective GDM research cohort (the SWIFT study) and followed T2D onset by performing 2-hour 75-g research oral glucose tolerance test (OGTT) at study baseline (6-9 weeks postpartum) and again annually for 2 years, and also by retrieving clinical diagnoses of T2D from 2 years through 10 years of follow up from electronic medical records. Targeted metabolomics and lipidomics were applied on fasting plasma samples collected at study baseline from 2-hour 75-g research OGTTs in a nested case-control study (100 future incident T2D cases vs 100 no T2D controls). RESULTS: Decreasing prolactin quartiles were associated with increased future T2D risk (adjusted odds ratio 2.48; 95% CI, 0.81-7.58; P = 0.05). In women who maintained normoglycemia during the 10-year follow-up period, higher prolactin at baseline was associated with higher insulin sensitivity (P = 0.038) and HDL-cholesterol (P = 0.01), but lower BMI (P = 0.001) and leptin (P = 0.002). Remarkably, among women who developed future T2D, prolactin was not correlated with a favorable metabolic status (all P > 0.05). Metabolomics and lipidomics showed that lower circulating prolactin strongly correlated with a T2D-high risk lipid profile, with elevated circulating neutral lipids and lower concentrations of specific phospholipids/sphingolipids. CONCLUSION: In women with recent GDM pregnancy, low circulating prolactin is associated with specific clinical and metabolic parameters and lipid metabolites linked to a high risk of developing T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Glucemia/metabolismo , Estudios de Casos y Controles , HDL-Colesterol , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Humanos , Embarazo , Prolactina , Estudios Prospectivos , Factores de Riesgo
3.
Front Endocrinol (Lausanne) ; 13: 852149, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600586

RESUMEN

Objective: Pregnancy is a dynamic state involving multiple metabolic adaptions in various tissues including the endocrine pancreas. However, a detailed characterization of the maternal islet metabolome in relation to islet function and the ambient circulating metabolome during pregnancy has not been established. Methods: A timed-pregnancy mouse model was studied, and age-matched non-pregnant mice were used as controls. Targeted metabolomics was applied to fasting plasma and purified islets during each trimester of pregnancy. Glucose homeostasis and islet function was assessed. Bioinformatic analyses were performed to reveal the metabolic adaptive changes in plasma and islets, and to identify key metabolic pathways associated with pregnancy. Results: Fasting glucose and insulin were found to be significantly lower in pregnant mice compared to non-pregnant controls, throughout the gestational period. Additionally, pregnant mice had superior glucose excursions and greater insulin response to an oral glucose tolerance test. Interestingly, both alpha and beta cell proliferation were significantly enhanced in early to mid-pregnancy, leading to significantly increased islet size seen in mid to late gestation. When comparing the plasma metabolome of pregnant and non-pregnant mice, phospholipid and fatty acid metabolism pathways were found to be upregulated throughout pregnancy, whereas amino acid metabolism initially decreased in early through mid pregnancy, but then increased in late pregnancy. Conversely, in islets, amino acid metabolism was consistently enriched throughout pregnancy, with glycerophospholid and fatty acid metabolism was only upregulated in late pregnancy. Specific amino acids (glutamate, valine) and lipids (acyl-alkyl-PC, diacyl-PC, and sphingomyelin) were found to be significantly differentially expressed in islets of the pregnant mice compared to controls, which was possibly linked to enhanced insulin secretion and islet proliferation. Conclusion: Beta cell proliferation and function are elevated during pregnancy, and this is coupled to the enrichment of islet metabolites and metabolic pathways primarily associated with amino acid and glycerophospholipid metabolism. This study provides insight into metabolic adaptive changes in glucose homeostasis and islet function seen during pregnancy, which will provide a molecular rationale to further explore the regulation of maternal metabolism to avoid the onset of pregnancy disorders, including gestational diabetes.


Asunto(s)
Glucosa , Insulina , Aminoácidos , Animales , Ácidos Grasos , Femenino , Homeostasis , Humanos , Metabolómica , Ratones , Embarazo
4.
BMC Med ; 19(1): 241, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34620173

RESUMEN

BACKGROUND: Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing type 2 diabetes (T2D). It is estimated that 20-50% of women with GDM history will progress to T2D within 10 years after delivery. Intensive lactation could be negatively associated with this risk, but the mechanisms behind a protective effect remain unknown. METHODS: In this study, we utilized a prospective GDM cohort of 1010 women without T2D at 6-9 weeks postpartum (study baseline) and tested for T2D onset up to 8 years post-baseline (n=980). Targeted metabolic profiling was performed on fasting plasma samples collected at both baseline and follow-up (1-2 years post-baseline) during research exams in a subset of 350 women (216 intensive breastfeeding, IBF vs. 134 intensive formula feeding or mixed feeding, IFF/Mixed). The relationship between lactation intensity and circulating metabolites at both baseline and follow-up were evaluated to discover underlying metabolic responses of lactation and to explore the link between these metabolites and T2D risk. RESULTS: We observed that lactation intensity was strongly associated with decreased glycerolipids (TAGs/DAGs) and increased phospholipids/sphingolipids at baseline. This lipid profile suggested decreased lipogenesis caused by a shift away from the glycerolipid metabolism pathway towards the phospholipid/sphingolipid metabolism pathway as a component of the mechanism underlying the benefits of lactation. Longitudinal analysis demonstrated that this favorable lipid profile was transient and diminished at 1-2 years postpartum, coinciding with the cessation of lactation. Importantly, when stratifying these 350 women by future T2D status during the follow-up (171 future T2D vs. 179 no T2D), we discovered that lactation induced robust lipid changes only in women who did not develop incident T2D. Subsequently, we identified a cluster of metabolites that strongly associated with future T2D risk from which we developed a predictive metabolic signature with a discriminating power (AUC) of 0.78, superior to common clinical variables (i.e., fasting glucose, AUC 0.56 or 2-h glucose, AUC 0.62). CONCLUSIONS: In this study, we show that intensive lactation significantly alters the circulating lipid profile at early postpartum and that women who do not respond metabolically to lactation are more likely to develop T2D. We also discovered a 10-analyte metabolic signature capable of predicting future onset of T2D in IBF women. Our findings provide novel insight into how lactation affects maternal metabolism and its link to future diabetes onset. TRIAL REGISTRATION: ClinicalTrials.gov NCT01967030 .


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Glucemia , Lactancia Materna , Diabetes Gestacional/epidemiología , Femenino , Humanos , Lactancia , Lípidos , Periodo Posparto , Embarazo , Estudios Prospectivos
5.
iScience ; 24(8): 102909, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34458694

RESUMEN

Omega-3 fatty acid prescription drugs, Vascepa (≥96% eicosapentaenoic acid [EPA] ethyl ester) and Lovaza (46.5% EPA and 37.5% docosahexaenoic acid ethyl ester) are known therapeutic regimens to treat hypertriglyceridemia. However, their impact on glucose homeostasis, progression to type 2 diabetes, and pancreatic beta cell function are not well understood. In the present study, mice were treated with Vascepa or Lovaza for one week prior to six weeks of high-fat diet feeding. Vascepa but not Lovaza led to reduced insulin resistance, reduced fasting insulin and glucose, and improved glucose intolerance. Vascepa improved beta cell function, reduced liver triglycerides with enhanced expression of hepatic fatty acid oxidation genes, and altered microbiota composition. Vascepa has protective effects on diet-induced insulin resistance and glucose intolerance in mice.

6.
JCI Insight ; 6(10)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34027899

RESUMEN

GWAS have shown that the common R325W variant of SLC30A8 (ZnT8) increases the risk of type 2 diabetes (T2D). However, ZnT8 haploinsufficiency is protective against T2D in humans, counterintuitive to earlier work in humans and mouse models. Therefore, whether decreasing ZnT8 activity is beneficial or detrimental to ß cell function, especially under conditions of metabolic stress, remains unknown. In order to examine whether the existence of human islet amyloid polypeptide (hIAPP), a coresident of the insulin granule, affects the role of ZnT8 in regulating ß cell function, hIAPP-expressing transgenics were generated with reduced ZnT8 (ZnT8B+/- hIAPP) or null ZnT8 (ZnT8B-/- hIAPP) expression specifically in ß cells. We showed that ZnT8B-/- hIAPP mice on a high-fat diet had intensified amyloid deposition and further impaired glucose tolerance and insulin secretion compared with control, ZnT8B-/-, and hIAPP mice. This can in part be attributed to impaired glucose sensing and islet cell synchronicity. Importantly, ZnT8B+/- hIAPP mice were also glucose intolerant and had reduced insulin secretion and increased amyloid aggregation compared with controls. These data suggest that loss of or reduced ZnT8 activity in ß cells heightened the toxicity induced by hIAPP, leading to impaired ß cell function and glucose homeostasis associated with metabolic stress.


Asunto(s)
Amiloidosis/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Transportador 8 de Zinc , Animales , Modelos Animales de Enfermedad , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Masculino , Ratones , Ratones Transgénicos , Transportador 8 de Zinc/genética , Transportador 8 de Zinc/metabolismo
7.
Elife ; 92020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32748787

RESUMEN

Approximately, 35% of women with Gestational Diabetes (GDM) progress to Type 2 Diabetes (T2D) within 10 years. However, links between GDM and T2D are not well understood. We used a well-characterised GDM prospective cohort of 1035 women following up to 8 years postpartum. Lipidomics profiling covering >1000 lipids was performed on fasting plasma samples from participants 6-9 week postpartum (171 incident T2D vs. 179 controls). We discovered 311 lipids positively and 70 lipids negatively associated with T2D risk. The upregulation of glycerolipid metabolism involving triacylglycerol and diacylglycerol biosynthesis suggested activated lipid storage before diabetes onset. In contrast, decreased sphingomyelines, hexosylceramide and lactosylceramide indicated impaired sphingolipid metabolism. Additionally, a lipid signature was identified to effectively predict future diabetes risk. These findings demonstrate an underlying dyslipidemia during the early postpartum in those GDM women who progress to T2D and suggest endogenous lipogenesis may be a driving force for future diabetes onset.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Diabetes Gestacional , Dislipidemias/complicaciones , Lípidos/sangre , Adulto , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Lipogénesis , Redes y Vías Metabólicas , Periodo Posparto/sangre , Valor Predictivo de las Pruebas , Embarazo , Estudios Prospectivos , Factores de Riesgo
8.
Diabetes Obes Metab ; 22(11): 2021-2031, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32558194

RESUMEN

AIM: To examine the mechanism of action of γ-aminobutyric acid (GABA) on ß-cell proliferation and investigate if co-treatment with Ly49, a novel GABA type A receptor positive allosteric modulator (GABAA -R PAM), amplifies this effect. METHODS: Human or mouse islets were co-treated for 4-5 days with GABA and selected receptor or cell signalling pathway modulators. Immunofluorescence was used to determine protein co-localization, cell number or proliferation, and islet size. Osmotic minipumps were surgically implanted in mice to assess Ly49 effects on pancreatic ß-cells. RESULTS: Amplification of GABAA -R signalling enhanced GABA-stimulated ß-cell proliferation in cultured mouse islets. Co-treatment of GABA with an inhibitor specific for PI3K, mTORC1/2, or p70S6K, abolished GABA-stimulated ß-cell proliferation in mouse and human islets. Nuclear p-AktSer473 and p-p70S6KThr421/Ser424 expression in pancreatic ß-cells was increased in GABA-treated mice compared with vehicle-treated mice, an effect augmented with GABA and Ly49 co-treatment. Mice co-treated with GABA and Ly49 exhibited enhanced ß-cell area and proliferation compared with GABA-treated mice. Furthermore, S961 injection (an insulin receptor antagonist) resulted in enhanced plasma insulin in GABA and Ly49 co-treated mice compared with GABA-treated mice. Importantly, GABA co-treated with Ly49 increased ß-cell proliferation in human islets providing a potential application for human subjects. CONCLUSIONS: We show that GABA stimulates ß-cell proliferation via the PI3K/mTORC1/p70S6K pathway in both mouse and human islets. Furthermore, we show that Ly49 enhances the ß-cell regenerative effects of GABA, showing potential in the intervention of diabetes.


Asunto(s)
Receptores de GABA , Proteínas Quinasas S6 Ribosómicas 70-kDa , Animales , Proliferación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ácido gamma-Aminobutírico
9.
PLoS Med ; 17(5): e1003112, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433647

RESUMEN

BACKGROUND: Women with a history of gestational diabetes mellitus (GDM) have a 7-fold higher risk of developing type 2 diabetes (T2D) during midlife and an elevated risk of developing hypertension and cardiovascular disease. Glucose tolerance reclassification after delivery is recommended, but fewer than 40% of women with GDM are tested. Thus, improved risk stratification methods are needed, as is a deeper understanding of the pathology underlying the transition from GDM to T2D. We hypothesize that metabolites during the early postpartum period accurately distinguish risk of progression from GDM to T2D and that metabolite changes signify underlying pathophysiology for future disease development. METHODS AND FINDINGS: The study utilized fasting plasma samples collected from a well-characterized prospective research study of 1,035 women diagnosed with GDM. The cohort included racially/ethnically diverse pregnant women (aged 20-45 years-33% primiparous, 37% biparous, 30% multiparous) who delivered at Kaiser Permanente Northern California hospitals from 2008 to 2011. Participants attended in-person research visits including 2-hour 75-g oral glucose tolerance tests (OGTTs) at study baseline (6-9 weeks postpartum) and annually thereafter for 2 years, and we retrieved diabetes diagnoses from electronic medical records for 8 years. In a nested case-control study design, we collected fasting plasma samples among women without diabetes at baseline (n = 1,010) to measure metabolites among those who later progressed to incident T2D or did not develop T2D (non-T2D). We studied 173 incident T2D cases and 485 controls (pair-matched on BMI, age, and race/ethnicity) to discover metabolites associated with new onset of T2D. Up to 2 years post-baseline, we analyzed samples from 98 T2D cases with 239 controls to reveal T2D-associated metabolic changes. The longitudinal analysis tracked metabolic changes within individuals from baseline to 2 years of follow-up as the trajectory of T2D progression. By building prediction models, we discovered a distinct metabolic signature in the early postpartum period that predicted future T2D with a median discriminating power area under the receiver operating characteristic curve of 0.883 (95% CI 0.820-0.945, p < 0.001). At baseline, the most striking finding was an overall increase in amino acids (AAs) as well as diacyl-glycerophospholipids and a decrease in sphingolipids and acyl-alkyl-glycerophospholipids among women with incident T2D. Pathway analysis revealed up-regulated AA metabolism, arginine/proline metabolism, and branched-chain AA (BCAA) metabolism at baseline. At follow-up after the onset of T2D, up-regulation of AAs and down-regulation of sphingolipids and acyl-alkyl-glycerophospholipids were sustained or strengthened. Notably, longitudinal analyses revealed only 10 metabolites associated with progression to T2D, implicating AA and phospholipid metabolism. A study limitation is that all of the analyses were performed with the same cohort. It would be ideal to validate our findings in an independent longitudinal cohort of women with GDM who had glucose tolerance tested during the early postpartum period. CONCLUSIONS: In this study, we discovered a metabolic signature predicting the transition from GDM to T2D in the early postpartum period that was superior to clinical parameters (fasting plasma glucose, 2-hour plasma glucose). The findings suggest that metabolic dysregulation, particularly AA dysmetabolism, is present years prior to diabetes onset, and is revealed during the early postpartum period, preceding progression to T2D, among women with GDM. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01967030.


Asunto(s)
Aminoácidos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Metabolismo de los Lípidos , Adulto , Progresión de la Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Periodo Posparto/metabolismo , Embarazo , Factores de Riesgo , Adulto Joven
10.
FASEB J ; 33(3): 3968-3984, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30509117

RESUMEN

γ-Aminobutyric acid (GABA) administration has been shown to increase ß-cell mass, leading to a reversal of type 1 diabetes in mice. Whether GABA has any effect on ß cells of healthy and prediabetic/glucose-intolerant obese mice remains unknown. In the present study, we show that oral GABA administration ( ad libitum) to mice indeed increased pancreatic ß-cell mass, which led to a modest enhancement in insulin secretion and glucose tolerance. However, GABA treatment did not further increase insulin-positive islet area in high fat diet-fed mice and was unable to prevent or reverse glucose intolerance and insulin resistance. Mechanistically, whether in vivo or in vitro, GABA treatment increased ß-cell proliferation. In vitro, the effect was shown to be mediated via the GABAA receptor. Single-cell RNA sequencing analysis revealed that GABA preferentially up-regulated pathways linked to ß-cell proliferation and simultaneously down-regulated those networks required for other processes, including insulin biosynthesis and metabolism. Interestingly, single-cell differential expression analysis revealed GABA treatment gave rise to a distinct subpopulation of ß cells with a unique transcriptional signature, including urocortin 3 ( ucn3), wnt4, and hepacam2. Taken together, this study provides new mechanistic insight into the proliferative nature of GABA but suggests that ß-cell compensation associated with prediabetes overlaps with, and negates, its proliferative effects.-Untereiner, A., Abdo, S., Bhattacharjee, A., Gohil, H., Pourasgari, F., Ibeh, N., Lai, M., Batchuluun, B., Wong, A., Khuu, N., Liu, Y., Al Rijjal, D., Winegarden, N., Virtanen, C., Orser, B. A., Cabrera, O., Varga, G., Rocheleau, J., Dai, F. F., Wheeler, M. B. GABA promotes ß-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity.


Asunto(s)
Proliferación Celular , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , Transcriptoma , Ácido gamma-Aminobutírico/farmacología , Animales , Línea Celular , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Homeostasis , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Receptores de GABA-A/metabolismo , Urocortinas/metabolismo
11.
Diabetes ; 65(9): 2529-39, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27338739

RESUMEN

Gestational diabetes mellitus (GDM) affects 3-14% of pregnancies, with 20-50% of these women progressing to type 2 diabetes (T2D) within 5 years. This study sought to develop a metabolomics signature to predict the transition from GDM to T2D. A prospective cohort of 1,035 women with GDM pregnancy were enrolled at 6-9 weeks postpartum (baseline) and were screened for T2D annually for 2 years. Of 1,010 women without T2D at baseline, 113 progressed to T2D within 2 years. T2D developed in another 17 women between 2 and 4 years. A nested case-control design used 122 incident case patients matched to non-case patients by age, prepregnancy BMI, and race/ethnicity. We conducted metabolomics with baseline fasting plasma and identified 21 metabolites that significantly differed by incident T2D status. Machine learning optimization resulted in a decision tree modeling that predicted T2D incidence with a discriminative power of 83.0% in the training set and 76.9% in an independent testing set, which is far superior to measuring fasting plasma glucose levels alone. The American Diabetes Association recommends T2D screening in the early postpartum period via oral glucose tolerance testing after GDM, which is a time-consuming and inconvenient procedure. Our metabolomics signature predicted T2D incidence from a single fasting blood sample. This study represents the first metabolomics study of the transition from GDM to T2D validated in an independent testing set, facilitating early interventions.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Diabetes Gestacional/epidemiología , Adulto , Glucemia/metabolismo , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Gestacional/sangre , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Incidencia , Persona de Mediana Edad , Periodo Posparto/sangre , Embarazo , Estudios Prospectivos , Adulto Joven
12.
Cell Rep ; 14(12): 2889-900, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26997281

RESUMEN

Prediabetes, a state of mild glucose intolerance, can persist for years before a sudden decline in beta cell function and rapid deterioration to overt diabetes. The mechanism underlying this tipping point of beta cell dysfunction remains unknown. Here, the furan fatty acid metabolite CMPF was evaluated in a prospective cohort. Those who developed overt diabetes had a significant increase in CMPF over time, whereas prediabetics maintained chronically elevated levels, even up to 5 years before diagnosis. To evaluate the effect of increasing CMPF on diabetes progression, we used obese, insulin-resistant models of prediabetes. CMPF accelerated diabetes development by inducing metabolic remodeling, resulting in preferential utilization of fatty acids over glucose. This was associated with diminished glucose-stimulated insulin secretion, increased ROS formation, and accumulation of proinsulin, all characteristics of human diabetes. Thus, an increase in CMPF may represent the tipping point in diabetes development by accelerating beta cell dysfunction.


Asunto(s)
Diabetes Mellitus Tipo 2/patología , Furanos/sangre , Furanos/metabolismo , Estado Prediabético/patología , Propionatos/sangre , Propionatos/metabolismo , Adulto , Anciano , Animales , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Productos Finales de Glicación Avanzada/análisis , Glucólisis/efectos de los fármacos , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Modelos Logísticos , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Persona de Mediana Edad , Obesidad/etiología , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Páncreas/metabolismo , Páncreas/patología , Estado Prediabético/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
J Biol Chem ; 290(41): 25045-61, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26272612

RESUMEN

GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , ATPasas de Translocación de Protón/metabolismo , Receptores de Superficie Celular/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Técnicas de Silenciamiento del Gen , Péptido 1 Similar al Glucagón/farmacología , Humanos , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Masculino , Ratones , Unión Proteica , ATPasas de Translocación de Protón/deficiencia , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , ATPasas de Translocación de Protón Vacuolares/deficiencia , ATPasas de Translocación de Protón Vacuolares/genética
15.
PLoS One ; 10(6): e0129226, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075596

RESUMEN

Glucagon regulates glucose homeostasis by controlling glycogenolysis and gluconeogenesis in the liver. Exaggerated and dysregulated glucagon secretion can exacerbate hyperglycemia contributing to type 2 diabetes (T2D). Thus, it is important to understand how glucagon receptor (GCGR) activity and signaling is controlled in hepatocytes. To better understand this, we sought to identify proteins that interact with the GCGR to affect ligand-dependent receptor activation. A Flag-tagged human GCGR was recombinantly expressed in Chinese hamster ovary (CHO) cells, and GCGR complexes were isolated by affinity purification (AP). Complexes were then analyzed by mass spectrometry (MS), and protein-GCGR interactions were validated by co-immunoprecipitation (Co-IP) and Western blot. This was followed by studies in primary hepatocytes to assess the effects of each interactor on glucagon-dependent glucose production and intracellular cAMP accumulation, and then in immortalized CHO and liver cell lines to further examine cell signaling. Thirty-three unique interactors were identified from the AP-MS screening of GCGR expressing CHO cells in both glucagon liganded and unliganded states. These studies revealed a particularly robust interaction between GCGR and 5 proteins, further validated by Co-IP, Western blot and qPCR. Overexpression of selected interactors in mouse hepatocytes indicated that two interactors, LDLR and TMED2, significantly enhanced glucagon-stimulated glucose production, while YWHAB inhibited glucose production. This was mirrored with glucagon-stimulated cAMP production, with LDLR and TMED2 enhancing and YWHAB inhibiting cAMP accumulation. To further link these interactors to glucose production, key gluconeogenic genes were assessed. Both LDLR and TMED2 stimulated while YWHAB inhibited PEPCK and G6Pase gene expression. In the present study, we have probed the GCGR interactome and found three novel GCGR interactors that control glucagon-stimulated glucose production by modulating cAMP accumulation and genes that control gluconeogenesis. These interactors may be useful targets to control glucose homeostasis in T2D.


Asunto(s)
Hígado/metabolismo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Animales , Células CHO , Proteínas Portadoras , Línea Celular , Cricetulus , AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Gluconeogénesis/genética , Glucosa/metabolismo , Hepatocitos/metabolismo , Ratones , Unión Proteica , Proteómica/métodos , Receptores Acoplados a Proteínas G , Reproducibilidad de los Resultados
16.
J Biol Chem ; 290(30): 18757-69, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25969539

RESUMEN

Zinc plays an essential role in the regulation of pancreatic ß cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the ß cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 ß cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic ß cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 ß cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in ß cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on ß cell survival.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Diabetes Mellitus/genética , Células Secretoras de Insulina/patología , Proteínas de Neoplasias/metabolismo , Zinc/metabolismo , Animales , Apoptosis , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Transporte de Catión/genética , Citosol/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Homeostasis , Humanos , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Ratones , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo
17.
Mol Cell Proteomics ; 13(11): 3049-62, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25044020

RESUMEN

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that regulates glucose homeostasis. Because of their direct stimulation of insulin secretion from pancreatic ß cells, GLP-1 receptor (GLP-1R) agonists are now important therapeutic options for the treatment of type 2 diabetes. To better understand the mechanisms that control the insulinotropic actions of GLP-1, affinity purification and mass spectrometry (AP-MS) were employed to uncover potential proteins that functionally interact with the GLP-1R. AP-MS performed on Chinese hamster ovary cells or MIN6 ß cells, both expressing the human GLP-1R, revealed 99 proteins potentially associated with the GLP-1R. Three novel GLP-1R interactors (PGRMC1, Rab5b, and Rab5c) were further validated through co-immunoprecipitation/immunoblotting, fluorescence resonance energy transfer, and immunofluorescence. Functional studies revealed that overexpression of PGRMC1, a novel cell surface receptor that associated with liganded GLP-1R, enhanced GLP-1-induced insulin secretion (GIIS) with the most robust effect. Knockdown of PGRMC1 in ß cells decreased GIIS, indicative of positive interaction with GLP-1R. To gain insight mechanistically, we demonstrated that the cell surface PGRMC1 ligand P4-BSA increased GIIS, whereas its antagonist AG-205 decreased GIIS. It was then found that PGRMC1 increased GLP-1-induced cAMP accumulation. PGRMC1 activation and GIIS induced by P4-BSA could be blocked by inhibition of adenylyl cyclase/EPAC signaling or the EGF receptor-PI3K signal transduction pathway. These data reveal a dual mechanism for PGRMC1-increased GIIS mediated through cAMP and EGF receptor signaling. In conclusion, we identified several novel GLP-1R interacting proteins. PGRMC1 expressed on the cell surface of ß cells was shown to interact with the activated GLP-1R to enhance the insulinotropic actions of GLP-1.


Asunto(s)
Péptido 1 Similar al Glucagón/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Glucagón/metabolismo , Receptores de Progesterona/metabolismo , Inhibidores de Adenilato Ciclasa , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , AMP Cíclico/biosíntesis , AMP Cíclico/metabolismo , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Receptor del Péptido 1 Similar al Glucagón , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Secreción de Insulina , Espectrometría de Masas , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Ratas , Receptores de Progesterona/antagonistas & inhibidores , Receptores de Progesterona/genética , Proteínas de Unión al GTP rab5/metabolismo
18.
Cell Metab ; 19(4): 653-66, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24703697

RESUMEN

Gestational diabetes (GDM) results from failure of the ß cells to adapt to increased metabolic demands; however, the cause of GDM and the extremely high rate of progression to type 2 diabetes (T2D) remains unknown. Using metabolomics, we show that the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is elevated in the plasma of humans with GDM, as well as impaired glucose-tolerant and T2D patients. In mice, diabetic levels of plasma CMPF induced glucose intolerance, impaired glucose-stimulated insulin secretion, and decreased glucose utilization. Mechanistically, we show that CMPF acts directly on the ß cell, causing impaired mitochondrial function, decreasing glucose-induced ATP accumulation, and inducing oxidative stress, resulting in dysregulation of key transcription factors and ultimately reduced insulin biosynthesis. Importantly, specifically blocking its transport through OAT3 or antioxidant treatment could prevent CMPF-induced ß cell dysfunction. Thus, CMPF provides a link between ß cell dysfunction and GDM/T2D that could be targeted therapeutically.


Asunto(s)
Furanos/sangre , Células Secretoras de Insulina/patología , Mitocondrias/patología , Modelos Biológicos , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Propionatos/sangre , Adenosina Trifosfato/metabolismo , Animales , Furanos/efectos adversos , Humanos , Insulina/biosíntesis , Células Secretoras de Insulina/efectos de los fármacos , Metabolómica , Ratones , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/fisiología , Propionatos/efectos adversos , Factores de Transcripción/metabolismo
19.
PLoS One ; 9(4): e93746, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24695667

RESUMEN

Class B G protein-coupled receptors (GPCRs) are important regulators of endocrine physiology, and peptide-based therapeutics targeting some of these receptors have proven effective at treating disorders such as hypercalcemia, osteoporosis, and type 2 diabetes mellitus (T2DM). As next generation efforts attempt to develop novel non-peptide, orally available molecules for these GPCRs, new animal models expressing human receptor orthologs may be required because small molecule ligands make fewer receptor contacts, and thus, the impact of amino acid differences across species may be substantially greater. The objective of this report was to generate and characterize a new mouse model of the human glucagon-like peptide-1 receptor (hGLP-1R), a class B GPCR for which established peptide therapeutics exist for the treatment of T2DM. hGLP-1R knock-in mice express the receptor from the murine Glp-1r locus. Glucose tolerance tests and gastric emptying studies show hGLP-1R mice and their wild-type littermates display similar physiological responses for glucose metabolism, insulin secretion, and gastric transit, and treatment with the GLP-1R agonist, exendin-4, elicits similar responses in both groups. Further, ex vivo assays show insulin secretion from humanized islets is glucose-dependent and enhanced by GLP-1R agonists. To enable additional utility, the targeting construct of the knock-in line was engineered to contain both flanking LoxP sites and a C-terminal FLAG epitope. Anti-FLAG affinity purification shows strong expression of hGLP-1R in islets, lung, and stomach. We crossed the hGLP-1R line with Rosa26Cre mice and generated global Glp-1r-/- animals. Immunohistochemistry of pancreas from humanized and knock-out mice identified a human GLP-1R-specific antibody that detects the GLP-1R in human pancreas as well as in the pancreas of hGLP-1r knock-in mice. This new hGLP-1R model will allow tissue-specific deletion of the GLP-1R, purification of potential GLP-1R partner proteins, and testing of novel therapeutic agents targeting the hGLP-1R.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptores de Glucagón/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Receptor del Péptido 1 Similar al Glucagón , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Insulina/metabolismo , Ratones , Ratones Transgénicos , Páncreas/metabolismo , Receptores de Glucagón/genética
20.
Cell Stem Cell ; 8(3): 281-93, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362568

RESUMEN

The search for putative precursor cells within the pancreas has been the focus of extensive research. Previously, we identified rare pancreas-derived multipotent precursor (PMP) cells in the mouse with the intriguing capacity to generate progeny in the pancreatic and neural lineages. Here, we establish the embryonic pancreas as the developmental source of PMPs through lineage-labeling experiments. We also show that PMPs express insulin and can contribute to multiple pancreatic and neural cell types in vivo. In addition, we have isolated PMPs from adult human islet tissue that are also capable of extensive proliferation, self-renewal, and generation of multiple differentiated pancreatic and neural cell types. Finally, both mouse and human PMP-derived cells ameliorated diabetes in transplanted mice. These findings demonstrate that the adult mammalian pancreas contains a population of insulin(+) multipotent stem cells and suggest that these cells may provide a promising line of investigation toward potential therapeutic benefit.


Asunto(s)
Insulina/metabolismo , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Páncreas/citología , Adulto , Animales , Agregación Celular , Diferenciación Celular , Proliferación Celular , Diabetes Mellitus Experimental/terapia , Perfilación de la Expresión Génica , Humanos , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Ratones , Células Madre Multipotentes/trasplante , Cresta Neural/citología , Cresta Neural/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...