Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38857885

RESUMEN

AIMS: Klebsiella pneumoniae, an important opportunistic pathogen of nosocomial inflection, is known for its ability to form biofilm. The purpose of the current study is to assess how co- or mono-cultured probiotics affect K. pneumoniae's ability to produce biofilms and investigate the potential mechanisms by using a polyester nonwoven chemostat and a Caco-2 cell line. METHODS AND RESULTS: Compared with pure cultures of Lactobacillus rhamnosus and Lactobacillus sake, the formation of K. pneumoniae biofilm was remarkably inhibited by the mixture of L. rhamnosus, L. sake, and Bacillus subtilis at a ratio of 5:5:1 by means of qPCR and FISH assays. In addition, Lactobacillus in combination with B. subtilis could considerably reduce the adherence of K. pneumoniae to Caco-2 cells by using inhibition, competition, and displacement assays. According to the RT-PCR assay, the adsorption of K. pneumoniae to Caco-2 cells was effectively inhibited by the co-cultured probiotics, leading to significant reduction in the expression of proinflammatory cytokines induced by K. pneumoniae. Furthermore, the HPLC and RT-PCR analyses showed that the co-cultured probiotics were able to successfully prevent the expression of the biofilm-related genes of K. pneumoniae by secreting plenty of organic acids as well as the second signal molecule (c-di-GMP), resulting in inhibition on biofilm formation. CONCLUSION: Co-culture of L. sake, L. rhamnosus, and B. subtilis at a ratio of 5:5:1 could exert an antagonistic effect on the colonization of pathogenic K. pneumoniae by down-regulating the expression of biofilm-related genes. At the same time, the co-cultured probiotics could effectively inhibit the adhesion of K. pneumoniae to Caco-2 cells and block the expression of proinflammatory cytokines induced by K. pneumoniae.


Asunto(s)
Biopelículas , Técnicas de Cocultivo , Klebsiella pneumoniae , Probióticos , Biopelículas/crecimiento & desarrollo , Klebsiella pneumoniae/fisiología , Humanos , Probióticos/farmacología , Células CACO-2 , Bacillus subtilis/fisiología , Bacillus subtilis/genética , Lacticaseibacillus rhamnosus/fisiología , Adhesión Bacteriana , Lactobacillus/fisiología , Citocinas/metabolismo
2.
Front Oncol ; 13: 1224669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841431

RESUMEN

The stomach was once considered a sterile organ until the discovery of Helicobacter pylori (HP). With the application of high-throughput sequencing technology and macrogenomics, researchers have identified fungi and fivemajor bacterial phyla within the stomachs of healthy individuals. These microbial communities exert regulatory influence over various physiological functions, including energy metabolism and immune responses. HP is a well-recognized risk factor for gastric cancer, significantly altering the stomach's native microecology. Currently, numerous studies are centered on the mechanisms by which HP contributes to gastric cancer development, primarily involving the CagA oncoprotein. However, aside from exogenous infections such as HP and EBV, certain endogenous dysbiosis can also lead to gastric cancer through multiple mechanisms. Additionally, gut microbiota and its metabolites significantly impact the development of gastric cancer. The role of microbial therapies, including diet, phages, probiotics and fecal microbiota transplantation, in treating gastric cancer should not be underestimated. This review aims to study the mechanisms involved in the roles of exogenous pathogen infection and endogenous microbiota dysbiosis in the development of gastric cancer. Also, we describe the application of microbiota therapy in the treatment and prognosis of gastric cancer.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37624506

RESUMEN

Deoxynivalenol (DON) is a mycotoxin that significantly threatens the food and feed industry. Corn steep liquor (CSL) is an acidic byproduct of the corn starch industry, and DON is concentrated in CSL once the material is contaminated. In this work, a Pichia kudriavzevii strain that could remove DON from CSL was isolated and characterized. The strain P. kudriavzevii E4-205 showed detoxifying activity in a pH range of 4.0~7.0 and temperature of 25~42 °C, and 39.4% DON was reduced by incubating this strain in CSL supernatant diluted by 2-fold (5 µg/mL DON) for 48 h at pH 5.0 and 30 °C. Further mechanism studies showed that P. kudriavzevii E4-205 could adsorb DON by the cell wall and degrade DON by intracellular enzymes with NADH as a cofactor. The degradation product was identified as 3,7,8,15-tetrahydroxyscirpene by liquid chromatography-tandem mass spectrometry. DON adsorption by inactivated cells was characterized, and the adsorption followed pseudo first-order kinetics. This study revealed a novel mechanism by which microbes degrade DON and might serve as a guide for the development of DON biological detoxification methods.

4.
Biotechnol Biofuels Bioprod ; 16(1): 94, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268988

RESUMEN

BACKGROUND: The development of biofuels, especially liquid hydrocarbon fuels, has been widely concerned due to the depletion of fossil resources. In order to obtain fuel precursors, the reaction of C-C bond formation is usually carried out with biomass derived ketones/aldehydes as reactants. Acetoin and 2,3-butanediol are two platform chemicals, which are co-existed in fermentation broth and traditionally separated by distillation, and then acetoin could be use as C4 building block to prepare hydrocarbon fuels. In order to mitigate the process complexity, direct aldol condensation reaction of acetoin in fermentation broth was studied in this work. RESULTS: A one-pot process of product separation and acetoin derivative synthesis was proposed based on salting-out extraction (SOE). Aldol condensation reaction of acetoin and 5-methyl furfural in different SOE systems was compared, and the results showed that the synthesis of C10 fuel precursors and separation of C10 products and 2,3-butanediol from fermentation broth were achieved in one-pot with ethanolammonium butyrate (EOAB) and K2HPO4 as SOE reagents and catalysts. The SOE and reaction conditions such as the concentrations of EOAB and K2HPO4, reaction temperature and time were optimized. When the system was composed of 6 wt% EOAB-44 wt% K2HPO4 and the mixture was stirred for 6 h at 200 rpm, 40 â„ƒ, the yield of C10 products was 80.7%, and 95.5% 2,3-butanediol was distributed to the top EOAB-rich phase. The exploration of reaction mechanism showed that an imine intermediate was rapidly formed and the subsequent C10 product formation was the key step for aldol condensation reaction. CONCLUSIONS: With EOAB and K2HPO4 as SOE reagents and catalysts, one-pot synthesis of fuel precursor from acetoin fermentation broth was achieved without prior purification. A yield of 80.7% for C10 products was obtained which was accumulated at the interface of two aqueous-phase, and 95.5% 2,3-BD was distributed to the top EOAB-rich phase. This work provides a new integration process of product separation and derivative synthesis from fermentation broth based on ionic liquid SOE.

5.
Foods ; 12(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37372523

RESUMEN

Dendrobium officinale polysaccharide (DOP), which serves as a prebiotic, exhibits a variety of biological activities, including hypoglycemic activities. However, the effects of DOP on diabetes prevention and its hypoglycemic mechanisms are still unclear. In this study, the effects of DOP treatment on the prediabetic mice model were studied and the mechanism was investigated. The results showed that 200 mg/kg/d of DOP reduced the relative risk of type 2 diabetes mellitus (T2DM) from prediabetes by 63.7%. Meanwhile, DOP decreased the level of LPS and inhibited the expression of TLR4 by regulating the composition of the gut microbiota, consequently relieving the inflammation and alleviating insulin resistance. In addition, DOP increased the abundance of SCFA (short chain fatty acid)-producing bacteria in the intestine, increased the levels of intestinal SCFAs, promoted the expression of short-chain fatty acid receptors FFAR2/FFAR3, and increased the secretion of the intestinal hormones GLP-1 and PYY, which helped to repair islet damage, suppress appetite, and improve insulin resistance. Our results suggested that DOP is a promising functional food supplement for the prevention of T2DM.

6.
Talanta ; 253: 123971, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36201955

RESUMEN

Since most anti-glioma drug candidates hardly permeate through the blood-brain barrier (BBB), preclinical models that can integrate the complexity of the tumor microenvironment and the structure and function of the BBB is urgently needed for the treatment of glioma. Herein, we constructed an in vitro BBB-glioma microfluidic chip model lined by primary human brain microvascular endothelial cells, pericytes, astrocytes and glioma cells, which could recapitulate the high level of barrier function of the in vivo human BBB and glioma microenvironment. The BBB unit in BBB-glioma microfluidic chip (BBB-U251 chip) displayed selective permeability to fluorescein isothiocyanate isomer-dextran (FITC-dextran) with different molecular weights and three model drugs with different permeability behavior across BBB, which indicated that this glioma model included a functional barrier. Six potential anti-glioma components in traditional Chinese medicine (TCM) were delivered into the blood channel and the permeated amount was quantified by high-performance liquid chromatography combined with ultraviolet (HPLC-UV). The permeated drugs then directly acted on 3D cultured glioma cells (U251) to evaluate the drug efficacy. The results of permeability coefficients of drugs showed that the data were closer to the in vivo data of traditional Transwell model. The effect of the drugs on U251 cells in the BBB-U251 chip was significantly lower due to the existence of BBB. Drug responses on glioma demonstrated the necessity to take BBB into account during the development of anti-glioma new drugs. Therefore, this 3D glioma microfluidic models integrating the BBB functionality can be a useful platform for screening the anticancer drug for brain tumors.


Asunto(s)
Barrera Hematoencefálica , Humanos , Células Endoteliales , Medicina Tradicional China , Microfluídica
7.
Molecules ; 27(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36500651

RESUMEN

The efficacy and pharmacokinetics of the biologically active components in Anemarrhenae rhizoma (AR) would be affected by the interaction of P-glycoprotein(P-gp) and effective components in AR. However, little is known about the interaction between them. The goal of this research was to examine the transmembrane absorption of timosaponin AIII(TAIII), timosaponin BII(TBII), sarsasapogenin (SSG), mangiferin(MGF), neomangiferin(NMGF), isomangiferin(IMGF), and baohuosideI(BHI) in AR and their interaction with P-gp. Seven effective components in AR(TAIII, TBII, SSG, MGF, NMGF, IMGF, and BHI) were investigated, and MDCK-MDR1 cells were used as the transport cell model. CCK-8 assays, bidirectional transport assays, and Rhodamine-123 (Rh-123) transport assays were determined in the MDCK-MDR1 cells. LC/MS was applied to the quantitative analysis of TAIII, TBII, MGF, NMGF, IMGF, SSG, and BHI in transport samples. The efflux ratio of MGF, TAIII, TBII, and BHI was greater than 2 and significantly descended with the co-administration of Verapamil, indicating MGF, TAIII, TBII, and BHI as the substrates of P-gp. The efflux ratio of the seven effective components in the extracts (10 mg/mL) of AR decreased from 3.00~1.08 to 1.92~0.48. Compared to the efflux ratio of Rh-123 in the control group (2.46), the efflux ratios of Rh-123 were 1.22, 1.27, 1.25, 1.09, 1.31, and 1.47 by the addition of TAIII, TBII, MGF, IMGF, NMGF, and BHI, respectively, while the efflux ratio of Rh-123 with the co-administration of SSG had no statistical difference compared to the control group. These results indicated that MGF, TAIII, TBII, and BHI could be the substrates of P-gp. TAIII, TBII, MGF, IMGF, NMGF, and BHI show the effect of inhibiting P-gp function, respectively. These findings provide important basic pharmacological data to assist the therapeutic development of AR constituents and extracts.


Asunto(s)
Anemarrhena , Rizoma , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Subfamilia B de Transportador de Casetes de Unión a ATP , Rodamina 123
8.
Front Pharmacol ; 13: 940555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991874

RESUMEN

Anemarrhenae Rhizoma (AR) has multiple pharmacological activities to prevent and treat Alzheimer's disease (AD). However, the effect and its molecular mechanism are not elucidated clear. This study aims to evaluate AR's therapeutic effect and mechanism on AD model rats induced by D-galactose and AlCl3 with serum metabolomics. Behavior study, histopathological observations, and biochemical analyses were applied in the AD model assessment. Gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-QTOF/MS) were combined with multivariate statistical analysis to identify potential biomarkers of AD and evaluate the therapeutic effect of AR on AD from the perspective of metabolomics. A total of 49 biomarkers associated with the AD model were identified by metabolomics, and pathway analysis was performed to obtain the metabolic pathways closely related to the model. With the pre-treatment of AR, 32 metabolites in the serum of AD model rats were significantly affected by AR compared with the AD model group. The regulated metabolites affected by AR were involved in the pathway of arginine biosynthesis, arginine and proline metabolism, ether lipid metabolism, glutathione metabolism, primary bile acid biosynthesis, and steroid biosynthesis. These multi-platform metabolomics analyses were in accord with the results of behavior study, histopathological observations, and biochemical analyses. This study explored the therapeutic mechanism of AR based on multi-platform metabolomics analyses and provided a scientific basis for the application of AR in the prevention and treatment of AD.

9.
Bioresour Technol ; 354: 127219, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35470003

RESUMEN

Pretreatment of lignocellulose is a vital step for biological production of bio-chemicals and bio-fuels. In this work, the pretreatment of Jerusalem artichoke stalk (JAS) by hydroxylammonium ionic liquids was evaluated based on pretreatment efficiency including polysaccharide recovery and enzymatic digestibility, and influence of ionic liquids on 2,3-butanediol fermentation using Bacillus subtilis. The results showed ethanolammonium acetate (EOAA) was efficient in JAS pretreatment, and maximum cell density was increased 25% when EOAA concentration was not greater than 0.3 mol/L in medium, while the total concentration of acetoin and 2,3-butanediol was 15% greater than the control at 0.1 mol/L EOAA. After the pretreatment under optimized conditions of 170 °C for 5-h and liquid-solid ratio of 18, about 87% cellulose and 75% hemicellulose were recovered, and glucose yield of 64% and xylose of 66% were obtained after 24-h hydrolysis of JAS residue by cellulase (15 FPU/g) with solid loading of 10 wt%.


Asunto(s)
Helianthus , Líquidos Iónicos , Bacillus subtilis , Butileno Glicoles , Fermentación , Helianthus/química , Hidrólisis , Líquidos Iónicos/farmacología
10.
Appl Biochem Biotechnol ; 190(3): 1092-1105, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31701376

RESUMEN

Agro-industrial wastes are excellent sources for solid-state culture to produce spores of microorganisms, whereas microbial co-cultivation is not fully exploited in solid-state culture. In this work, the co-cultivation of different strains of Bacillus subtilis, and three microbes of B. subtilis, Bacillus mucilaginosus, and Paecilomyces lilacinus was studied using a solid medium only composed of water and tobacco waste residue after extraction of nicotine and solanesol. The influences of matrix thickness, moister, temperature, and ratio of three microbes in seed on the cell growth and spore formation were studied. The maximum viable cells and spores of each microbe reached 1013 cfu/g when cultured alone at 30 °C in a medium containing 58.3% moisture. Co-cultivation of microbes stimulated cell growth and maximum viable cells of each microbe reached 1014 cfu/g, while spore production was inhibited and decreased to 1011 cfu/g. With decreasing amount of P. lilacinus in seed, total amount of spores was increased. When the seed with a ratio of 6:3:1 for B. mucilaginosus, B. subtilis, and P. lilacinus was inoculated, the total amount of spores reached 4.14 × 1012 cfu/g and the ratio was 1.7:0.7:1. These results indicate the potential of solid-state cultivation in the high production of spores from tobacco waste residue at low cost.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus/crecimiento & desarrollo , Residuos Industriales , Nicotiana , Paecilomyces/metabolismo , Medios de Cultivo , Fertilizantes , Esporas Bacterianas
11.
Bioprocess Biosyst Eng ; 42(3): 475-483, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30523447

RESUMEN

Acetoin is one of the bio-based platform chemicals and its optically pure isomers are important potential intermediates and precursors in the synthesis of novel optically active materials. (3R)-acetoin could be synthesized via enzymatic catalysis, whole-cell catalysis and fermentation. In this study a marine strain of Bacillus subtilis was isolated to produce optically pure (3R)-acetoin with glucose as carbon source. The effects of nutrients on the formation of (3R)-acetoin and conversion of glucose to (3R)-acetoin were evaluated by Plackett-Burman design, and the fermentation medium was optimized by central composite design. The impact of oxygen supply on the production of (3R)-acetoin was studied at different aeration rates. Under the optimal conditions, 83.7 g/L (3R)-acetoin with an optical purity of 99.4% was achieved by fed-batch fermentation, and the conversion of glucose to (3R)-acetoin was 91.5% of the theoretical value. The results indicate the industrial potential of this strain for (3R)-acetoin production via fermentation.


Asunto(s)
Acetoína/metabolismo , Organismos Acuáticos/crecimiento & desarrollo , Bacillus subtilis/crecimiento & desarrollo , Organismos Acuáticos/aislamiento & purificación , Bacillus subtilis/aislamiento & purificación , Técnicas de Cultivo Celular por Lotes
12.
Anal Chem ; 90(21): 12810-12814, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30298726

RESUMEN

There is a correlation between specific bases of DNA molecules and the chirality of single-walled carbon nanotubes (SWNTs), which contributes the recognition ability of DNA toward partner species of chiral SWNTs. A novel strategy of electrochemical characterization is reported here for the investigation on chirality selection of (7,6) and (6,5) SWNTs with various DNA sequences, and it is found that both DNA strand length and sequence composition significantly affected the interaction of chiral SWNTs with DNA. Then (7,6) and (6,5) SWNTs were distinguished from each other with DNA sequences chosen by electrochemical methods, which demonstrated an effective and excellent feasibility for the strategy and presented a new insight into DNA-SWNT applications. This strategy can also be applied to more chiral SWNTs and DNA sequence recognition and may serve as a prescreening method for the recognition and separation of single-chirality SWNTs, which would be a new contribution to the further development of DNA-SWNT hybrids.


Asunto(s)
ADN/química , Nanotubos de Carbono/química , Técnicas Electroquímicas/métodos , Ferricianuros/química , Ferrocianuros/química , Estructura Molecular , Electricidad Estática , Estereoisomerismo
13.
Bioprocess Biosyst Eng ; 41(8): 1079-1088, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29651644

RESUMEN

Ionic liquids (ILs) as "green" solvents have been widely used owing to their excellent properties, e.g., for biodiesel production. Crude glycerol as a by-product in biodiesel production is an ideal feedstock for the microbial production of 1,3-propanediol (PDO), which is a versatile bulk chemical. PDO can be produced by microbial consortium with the advantages of high substrate tolerance and narrow by-product profile. In the present study, the effect of IL 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([Emim][TfO]) was evaluated on the capacity of PDO production from crude glycerol by microbial consortium DL38-BH. In the batch fermentation at 60 g/L crude glycerol and 10 g/L [Emim][TfO], the concentration and yield of PDO from glycerol increased from 23.14 g/L and 0.45 mol/mol to 31.17 g/L and 0.60 mol/mol, respectively. Our results showed that [Emim][TfO] decreased the ratio of intracellular NADH to NAD+ and increased the concentration of 3-HPA during batch fermentation. The activities of three key enzymes in glycerol metabolism were stimulated by [Emim][TfO] during the batch fermentation by microbial consortium DL38-BH. Compared to the control, the proportion of Klebsiella genus which could convert glycerol to PDO increased significantly from 79.19% to 89.49% and the other genera that did not produce PDO were dramatically decreased (P < 0.05) at the end of batch fermentation. This work demonstrated that [Emim][TfO] significantly improved the concentration and yield of PDO from crude glycerol by adjusting microbial community during batch fermentation by microbial consortium.


Asunto(s)
Glicerol/metabolismo , Imidazoles/farmacología , Líquidos Iónicos/farmacología , Klebsiella/metabolismo , Mesilatos/farmacología , Consorcios Microbianos/fisiología , Glicoles de Propileno/metabolismo
14.
Bioprocess Biosyst Eng ; 40(3): 423-429, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27878591

RESUMEN

Acetoin is a natural flavor and an important bio-based chemical which could be separated from fermentation broth by solvent extraction, salting-out extraction or recovered in the form of derivatives. In this work, a novel method named as sugaring-out extraction coupled with fermentation was tried in the acetoin production by Bacillus subtilis DL01. The effects of six solvents on bacterial growth and the distribution of acetoin and glucose in different solvent-glucose systems were explored. The operation parameters such as standing time, glucose concentration, and volume ratio of ethyl acetate to fermentation broth were determined. In a system composed of fermentation broth, glucose (100%, m/v) and two-fold volume of ethyl acetate, nearly 100% glucose was distributed into bottom phase, and 61.2% acetoin into top phase without coloring matters and organic acids. The top phase was treated by vacuum distillation to remove solvent and purify acetoin, while the bottom phase was used as carbon source to produce acetoin in the next batch of fermentation.


Asunto(s)
Acetoína/química , Bacillus subtilis/metabolismo , Fermentación , Microbiología Industrial/métodos , Acetatos/química , Ácidos/química , Bacillus subtilis/genética , Butileno Glicoles/química , Técnicas de Química Analítica , Color , Medios de Cultivo/química , Glucosa/química , Ingeniería Metabólica , Solventes/química
15.
Appl Biochem Biotechnol ; 175(6): 3014-24, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25586489

RESUMEN

2,3-Butanediol has been known as a platform green chemical, and the production cost is the key problem for its large-scale production in which the carbon source occupies a major part. Sugarcane molasses is a by-product of sugar industry and considered as a cheap carbon source for biorefinery. In this paper, the fermentation of 2,3-butanediol with sugarcane molasses was studied by reducing the medium ingredients and operation steps. The fermentation medium was optimized by response surface methodology, and 2,3-butanediol production was explored under the deficiency of sterilization, molasses acidification, and organic nitrogen source. Based on these experiments, the fermentation medium with sugarcane molasses as carbon source was simplified to five ingredients, and the steps of molasses acidification and medium sterilization were reduced; thus, the cost was reduced and the production of 2,3-butanediol was enhanced. Under fed-batch fermentation, 99.5 g/L of 2,3-butanediol and acetoin was obtained at 60 h with a yield of 0.39 g/g sugar.


Asunto(s)
Butileno Glicoles/metabolismo , Enterobacter cloacae/metabolismo , Melaza/microbiología , Saccharum/microbiología , Reactores Biológicos/microbiología , Medios de Cultivo/metabolismo , Fermentación , Microbiología Industrial , Melaza/análisis , Saccharum/química , Saccharum/metabolismo
16.
J Microbiol Biotechnol ; 23(12): 1699-707, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002450

RESUMEN

During the fermentative production of 1,3-propanediol under high substrate concentrations, accumulation of intracellular 3-hydroxypropionaldehyde will cause premature cessation of cell growth and glycerol consumption. Discovery of oxidoreductases that can convert 3- hydroxypropionaldehyde to 1,3-propanediol using NADPH as cofactor could serve as a solution to this problem. In this paper, the yqhD gene from Klebsiella pneumoniae DSM2026, which was found encoding an aldehyde reductase (KpAR), was cloned and characterized. KpAR showed broad substrate specificity under physiological direction, whereas no catalytic activity was detected in the oxidation direction, and both NADPH and NADH can be utilized as cofactors. The cofactor binding mechanism was then investigated employing homology modeling and molecular dynamics simulations. Hydrogen-bond analysis showed that the hydrogen-bond interactions between KpAR and NADPH are much stronger than that for NADH. Free-energy decomposition dedicated that residues Gly37 to Val41 contribute most to the cofactor preference through polar interactions. In conclusion, this work provides a novel aldehyde reductase that has potential applications in the development of novel genetically engineered strains in the 1,3-propanediol industry, and gives a better understanding of the mechanisms involved in cofactor binding.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Coenzimas/metabolismo , Klebsiella pneumoniae/enzimología , NADP/metabolismo , NAD/metabolismo , Glicoles de Propileno/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Clonación Molecular , Coenzimas/química , Gliceraldehído/análogos & derivados , Gliceraldehído/metabolismo , Klebsiella pneumoniae/genética , Modelos Moleculares , Simulación de Dinámica Molecular , NAD/química , NADP/química , Propano/metabolismo , Unión Proteica , Electricidad Estática , Especificidad por Sustrato
17.
Sheng Wu Gong Cheng Xue Bao ; 29(10): 1441-9, 2013 Oct.
Artículo en Chino | MEDLINE | ID: mdl-24432659

RESUMEN

Bio-refinery using cheap biomass focuses mainly on strain improvement and fermentation strategies whereas less effort is made on down-stream processing. Using cheap biomass more impurities are introduced into the fermentation broths than mono-sugar substrate, thus down-stream processing for bio-based chemicals becomes the key problem in industrial production. The technique called salting-out extraction (SOE) was introduced in this review, which is used to separate target products from fermentation broth on the basis of partition difference of chemicals in two phases formed by mixing salts and organic solvents (or amphipathic chemicals) with broth at suitable ratios. The effect of solvents and salts on the formation of two aqueous phases, especially short chain alcohols and inorganic salts, and the application of SOE in recovery of bio-based chemicals, such as lactic acid, 1,3-propanediol, 2,3-butanediol and acetoin were summarized. The bio-chemicals were efficiently recovered from fermentation broth, and most of the impurities (cells and proteins) were removed in the same step. This technique is promising in the separation of bio-based chemicals, especially the recovery of hydrophilic molecules with low molecular weights.


Asunto(s)
Fraccionamiento Químico/métodos , Ácido Láctico/aislamiento & purificación , Glicoles de Propileno/aislamiento & purificación , Solventes/química , Butileno Glicoles/aislamiento & purificación , Butileno Glicoles/metabolismo , Fermentación , Ácido Láctico/metabolismo , Concentración Osmolar , Glicoles de Propileno/metabolismo , Cloruro de Sodio/química
18.
Bioresour Technol ; 101(21): 8342-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20591660

RESUMEN

Jerusalem artichoke stalk and tuber can serve as a low cost feedstock for the production of 2,3-butanediol. However, like other lignocellulosic materials, the sugar concentration in the hydrolysate prepared from Jerusalem artichoke stalk is too low to be utilized effectively by microorganisms. In this paper a novel strategy was proposed to increase the sugar concentration by adding Jerusalem artichoke tuber into the hydrolysate of the stalk. The sugar was then biotransformed into high-valued 2,3-butanediol by Klebsiella pneumoniae. Fed-batch simultaneous saccharification and fermentation (SSF) was effectively performed and 901.2 mmol/l (80.5 g/l) target products (2,3-butanediol plus acetoin) was obtained in 68 h by a stage-shift aeration strategy. The concentration, yield and productivity of target products were 16.9%, 16.8% and 23.4%, respectively, higher than the best results obtained with SSF operated under constant aeration. This showed that adding tuber to the stalk hydrolysate was a useful strategy for increasing the production of 2,3-butanediol from Jerusalem artichoke via fermentation.


Asunto(s)
Biotecnología/métodos , Butileno Glicoles/metabolismo , Helianthus/anatomía & histología , Helianthus/metabolismo , Klebsiella pneumoniae/metabolismo , Tubérculos de la Planta/metabolismo , Metabolismo de los Hidratos de Carbono , Fermentación/fisiología , Hidrólisis , Soluciones , Factores de Tiempo
19.
J Biotechnol ; 146(4): 173-8, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20156491

RESUMEN

1,3-Propanediol has wide applications for large volume markets, particularly in the polymer business. Microbial production of 1,3-propanediol has been considered as a competitor to the traditional petrochemical routes. However, the formation of 1,3-propanediol is limited by the amount of NADH supplied by the oxidative pathway of glycerol dismutation. Previous metabolic flux analysis revealed that relaxation of the coenzyme specificity of 1,3-propanediol oxidoreductase for both NADH and NADPH would increase the production of 1,3-propanediol as well as maintaining the NADH-NAD(+) circle. This work tried to accomplish such a relaxation by rational protein design. Overall binding free energy indicated that the electrostatic energy was the major force discriminating NADH from NADPH. Computational alanine-scanning mutagenesis of the active site residues illustrated that Asp41 was the key residue responsible for the coenzyme specificity. Compared with Asp41Ala, Asp41Gly could further weaken the repulsion between Asp41 and the phosphate group esterified to the 2'-hydroxyl group of the ribose at the adenine end of NADPH. Site-directed mutagenesis was conducted and the relaxation was successfully realized.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Proteínas Bacterianas/genética , Klebsiella pneumoniae/enzimología , Ingeniería de Proteínas/métodos , Alanina/genética , Alcohol Deshidrogenasa , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Anaerobiosis , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Coenzimas/genética , Coenzimas/metabolismo , Glicina/genética , Enlace de Hidrógeno , Klebsiella pneumoniae/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida/métodos , Unión Proteica , Especificidad por Sustrato , Termodinámica
20.
Appl Microbiol Biotechnol ; 82(5): 847-52, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19122999

RESUMEN

2,3-Butanediol is one of the promising bulk chemicals with wide applications. Its fermentative production has attracted great interest due to the high end concentration. However, large-scale production of 2,3-butanediol requires low-cost substrate and efficient fermentation process. In the present study, 2,3-butanediol production by Klebsiella pneumoniae from Jerusalem artichoke tubers was successfully performed, and various technologies, including separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF), were investigated. The concentration of target products reached 81.59 and 91.63 g/l, respectively after 40 h in batch and fed-batch SSF processes. Comparing with fed-batch SHF, the fed-batch SSF provided 30.3% higher concentration and 83.2% higher productivity of target products. The results showed that Jerusalem artichoke tuber is a favorable substrate for 2,3-butanediol production, and the application of fed-batch SSF for its conversion can result in a more cost-effective process.


Asunto(s)
Butileno Glicoles/metabolismo , Helianthus/química , Klebsiella pneumoniae/metabolismo , Butileno Glicoles/química , Fermentación , Helianthus/metabolismo , Hidrólisis , Microbiología Industrial/economía , Microbiología Industrial/métodos , Inulina/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...