Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202407070, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712793

RESUMEN

Oxetane synthase (TmCYP1), a novel cytochrome P450 enzyme from Taxus×media cell cultures, has been functionally characterized to efficiently catalyse the formation of the oxetane ring in tetracyclic taxoids. Transient expression of TmCYP1 in Nicotiana benthamiana using 2α,5α,7ß,9α,10ß,13α-hexaacetoxytaxa-4(20),11(12)-diene (1) as a substrate led to the production of a major oxetane derivative, 1ß-dehydroxybaccatin IV (1 a), and a minor 4ß,20-epoxide derivative, baccatin I (1 b). However, feeding the substrate decinnamoyltaxinine J (2), a 5-deacetylated derivative of 1, yielded only 5α-deacetylbaccatin I (2 b), a 4ß,20-epoxide. A possible reaction mechanism was proposed on the basis of substrate-feeding, 2H and 18O isotope labelling experiments, and density functional theory calculations. This reaction could be an intramolecular oxidation-acetoxyl rearrangement and the construction of the oxetane ring may occur through a concerted process; however, the 4ß,20-epoxide might be a shunt product. In this process, the C5-O-acetyl group in substrate is crucial for the oxetane ring formation but not for the 4(20)-epoxy ring formation by TmCYP1. These findings provide a better understanding of the enzymatic formation of the oxetane ring in paclitaxel biosynthesis.

2.
Phytochemistry ; 222: 114103, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636686

RESUMEN

Eight new cytochalasans rosellichalasins A-H (1-8), as well as two new shunt metabolites rosellinins A (9) and B (10) before intramolecular Diels-Alder cycloaddition reaction in cytochalasan biosynthesis, along with nine known cytochalsans (11-19) were isolated from the endophytic fungus Rosellinia sp. Glinf021, which was derived from the medicinal plant Glycyrrhiza inflata. Their structures were characterized by extensive analysis of 1D and 2D NMR as well as HRESIMS spectra and quantum chemical ECD calculations. The cytotoxic activities of these compounds were evaluated against four human cancer cell lines including HCT116, MDA-MB-231, BGC823, and PANC-1 with IC50 values ranging from 0.5 to 58.2 µM.


Asunto(s)
Antineoplásicos , Citocalasinas , Ensayos de Selección de Medicamentos Antitumorales , Xylariales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocalasinas/química , Citocalasinas/farmacología , Citocalasinas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Endófitos/química , Estructura Molecular , Relación Estructura-Actividad , Xylariales/química , Xylariales/clasificación
3.
Nat Commun ; 15(1): 3539, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670975

RESUMEN

Bergenin, a rare C-glycoside of 4-O-methyl gallic acid with pharmacological properties of antitussive and expectorant, is widely used in clinics to treat chronic tracheitis in China. However, its low abundance in nature and structural specificity hampers the accessibility through traditional crop-based manufacturing or chemical synthesis. In the present work, we elucidate the biosynthetic pathway of bergenin in Ardisia japonica by identifying the highly regio- and/or stereoselective 2-C-glycosyltransferases and 4-O-methyltransferases. Then, in Escherichia coli, we reconstruct the de novo biosynthetic pathway of 4-O-methyl gallic acid 2-C-ß-D-glycoside, which is the direct precursor of bergenin and is conveniently esterified into bergenin by in situ acid treatment. Moreover, further metabolic engineering improves the production of bergenin to 1.41 g L-1 in a 3-L bioreactor. Our work provides a foundation for sustainable supply of bergenin and alleviates its resource shortage via a synthetic biology approach.


Asunto(s)
Benzopiranos , Vías Biosintéticas , Escherichia coli , Ingeniería Metabólica , Benzopiranos/metabolismo , Benzopiranos/química , Ingeniería Metabólica/métodos , Escherichia coli/metabolismo , Escherichia coli/genética , Glicosiltransferasas/metabolismo , Metiltransferasas/metabolismo , Ácido Gálico/metabolismo , Ácido Gálico/química , Reactores Biológicos , Glicósidos/biosíntesis , Glicósidos/metabolismo , Glicósidos/química
4.
J Am Chem Soc ; 146(14): 9614-9622, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38545685

RESUMEN

Glycosides make up a biomedically important class of secondary metabolites. Most naturally occurring glycosides were isolated from plants and bacteria; however, the chemical diversity of glycosylated natural products in fungi remains largely unexplored. Herein, we present a paradigm to specifically discover diverse and bioactive glycosylated natural products from fungi by combining tailoring enzyme-guided genome mining with mass spectrometry (MS)-based metabolome analysis. Through in vivo genes deletion and heterologous expression, the first fungal C-glycosyltransferase AuCGT involved in the biosynthesis of stromemycin was identified from Aspergillus ustus. Subsequent homology-based genome mining for fungal glycosyltransferases by using AuCGT as a probe revealed a variety of biosynthetic gene clusters (BGCs) containing its homologues in diverse fungi, of which the glycoside-producing capability was corroborated by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. Consequently, 28 fungal aromatic polyketide C/O-glycosides, including 20 new compounds, were efficiently discovered and isolated from the three selected fungi. Moreover, several novel fungal C/O-glycosyltransferases, especially three novel α-pyrone C-glycosyltransferases, were functionally characterized and verified in the biosynthesis of these glycosides. In addition, a proof of principle for combinatorial biosynthesis was applied to design the production of unnatural glycosides in Aspergillus nidulans. Notably, the newly discovered glycosides exhibited significant antiviral, antibacterial, and antidiabetic activities. Our work demonstrates the promise of tailoring enzyme-guided genome-mining approach for the targeted discovery of fungal glycosides and promotes the exploration of a broader chemical space for natural products with a target structural motif in microbial genomes.


Asunto(s)
Aspergillus nidulans , Productos Biológicos , Glicosiltransferasas/metabolismo , Metaboloma , Espectrometría de Masas , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Glicósidos , Familia de Multigenes
5.
Angew Chem Int Ed Engl ; 63(13): e202315674, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38327006

RESUMEN

Sesquiterpene synthases (STPSs) catalyze carbocation-driven cyclization reactions that can generate structurally diverse hydrocarbons. The deprotonation-reprotonation process is widely used in STPSs to promote structural diversity, largely attributable to the distinct regio/stereoselective reprotonations. However, the molecular basis for reprotonation regioselectivity remains largely understudied. Herein, we analyzed two highly paralogous STPSs, Artabotrys hexapetalus (-)-cyperene synthase (AhCS) and ishwarane synthase (AhIS), which catalyze reactions that are distinct from the regioselective protonation of germacrene A (GA), resulting in distinct skeletons of 5/5/6 tricyclic (-)-cyperene and 6/6/5/3 tetracyclic ishwarane, respectively. Isotopic labeling experiments demonstrated that these protonations occur at C3 and C6 of GA in AhCS and AhIS, respectively. The cryo-electron microscopy-derived AhCS complex structure provided the structural basis for identifying different key active site residues that may govern their functional disparity. The structure-guided mutagenesis of these residues resulted in successful functional interconversion between AhCS and AhIS, thus targeting the three active site residues [L311-S419-C458]/[M311-V419-A458] that may act as a C3/C6 reprotonation switch for GA. These findings facilitate the rational design or directed evolution of STPSs with structurally diverse skeletons.


Asunto(s)
Transferasas Alquil y Aril , Sesquiterpenos , Microscopía por Crioelectrón , Sesquiterpenos/química , Catálisis , Dominio Catalítico , Transferasas Alquil y Aril/genética
6.
J Asian Nat Prod Res ; 26(1): 102-111, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38126332

RESUMEN

Short-chain dehydrogenase/reductases (SDRs) belong to the NAD(P)(H)-dependent oxidoreductase superfamily, which have various functions of catalyzing oxidation/reduction reactions and have been generally used as powerful biocatalysts in the production of pharmaceuticals. In this study, ScSDR1 and ScSDR2, two new SDRs have been identified and characterized from Stachybotrys chartarum 3.5365. Substrate scope investigation revealed that both of the enzymes possessed the ability to oxidize ß-OH to ketone specifically, and exhibited substrate promiscuity and high stereo-selectivity for efficiently catalyzing the structurally different prochiral ketones to chiral alcohols. These findings not only suggest that ScSDR1 and ScSDR2 might be potent synthetic tools in drug research and development, but also provide good examples for further engineered enzymes with higher efficiency and stereo-selectivity.


Asunto(s)
Deshidrogenasas-Reductasas de Cadena Corta , Stachybotrys , Oxidorreductasas , Catálisis , Alcoholes/química
7.
J Nat Prod ; 86(8): 1931-1938, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37486731

RESUMEN

Ten new diphenyl ether polyketides, including rhexocerins A-D (1-4) and rhexocercosporins A-F (5-10), together with three known congeners (11-13), were isolated from the endophytic fungus Rhexocercosporidium sp. Dzf14 obtained from Dioscorea zingiberensis. Their structures were elucidated by analysis of NMR and HRESIMS data, and their absolute configurations were determined by quantum chemical ECD calculations and X-ray crystallography. Compounds 1-4 featured an unprecedented tetracyclic carbon skeleton (6/7/5/6). Among them, compounds 1 and 5-9 showed antibacterial activities against methicillin-resistant S. aureus T144 and vancomycin-resistant E. faecalis 10.


Asunto(s)
Ascomicetos , Staphylococcus aureus Resistente a Meticilina , Policétidos , Estructura Molecular , Antibacterianos/química , Bacterias Grampositivas , Policétidos/química
8.
J Nat Prod ; 86(7): 1815-1823, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37336771

RESUMEN

Triterpenoids are a large and medicinally important group of natural products with a wide range of biological and pharmacological effects. Among them, malabaricane-type triterpenoids are a rare group of terpenoids with a 6,6,5-tricyclic ring system, and a few malabaricane triterpene synthases have been characterized to date. Here, an arabidiol synthase AmAS for the formation of the malabaricane-type 6,6,5-tricyclic triterpenoid skeleton in astramalabaricosides biosynthesis was characterized from Astragalus membranaceus. Multiple sequence alignment, site-directed mutagenesis, and molecular docking of AmAS reveal that residues Q256 and Y258 are essential for AmAS activity, and the triad motif IIH725-727 was the critical residue necessary for its product specificity. Mutation of IIH725-727 with VFN led to the formation of seven tricyclic, tetracyclic, and pentacyclic triterpenoids (1-7). Glycosylation of malabaricane-type triterpenoids in the biosynthesis of astramalabaricosides was also explored. Three triterpenoids (1, 5, and 6) displayed potent inhibitory effects against influenza A virus in vitro. These findings provide insights into malabaricane-type triterpenoids biosynthesis in A. membranaceus and access to diverse bioactive triterpenoids for drug discovery.


Asunto(s)
Astragalus propinquus , Triterpenos , Simulación del Acoplamiento Molecular , Triterpenos/farmacología , Triterpenos/química , Triterpenos Pentacíclicos
9.
Angew Chem Int Ed Engl ; 62(33): e202306020, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37326357

RESUMEN

CsCTS, a new diterpene synthase from Cephalotaxus sinensis responsible for forming cephalotene, the core skeleton of cephalotane-type diterpenoids with a highly rigid 6/6/5/7 tetracyclic ring system, was functionally characterized. The stepwise cyclization mechanism is proposed mainly based on structural investigation of its derailment products, and further demonstrated through isotopic labeling experiments and density functional theory calculations. Homology modeling and molecular dynamics simulation combined with site-directed mutagenesis revealed the critical amino acid residues for the unique carbocation-driven cascade cyclization mechanism of CsCTS. Altogether, this study reports the discovery of the diterpene synthase that catalyzes the first committed step of cephalotane-type diterpenoid biosynthesis and delineates its cyclization mechanism, laying the foundation to decipher and artificially construct the complete biosynthetic pathway of this type diterpenoids.


Asunto(s)
Diterpenos , Diterpenos/química , Diterpenos/metabolismo , Ciclización , Catálisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Sitios de Unión
10.
Acta Pharm Sin B ; 13(4): 1771-1785, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37139416

RESUMEN

Bibenzyls, a kind of important plant polyphenols, have attracted growing attention for their broad and remarkable pharmacological activities. However, due to the low abundance in nature, uncontrollable and environmentally unfriendly chemical synthesis processes, these compounds are not readily accessible. Herein, one high-yield bibenzyl backbone-producing Escherichia coli strain was constructed by using a highly active and substrate-promiscuous bibenzyl synthase identified from Dendrobium officinale in combination with starter and extender biosynthetic enzymes. Three types of efficiently post-modifying modular strains were engineered by employing methyltransferases, prenyltransferase, and glycosyltransferase with high activity and substrate tolerance together with their corresponding donor biosynthetic modules. Structurally different bibenzyl derivatives were tandemly and/or divergently synthesized by co-culture engineering in various combination modes. Especially, a prenylated bibenzyl derivative (12) was found to be an antioxidant that exhibited potent neuroprotective activity in the cellular and rat models of ischemia stroke. RNA-seq, quantitative RT-PCR, and Western-blot analysis demonstrated that 12 could up-regulate the expression level of an apoptosis-inducing factor, mitochondria associated 3 (Aifm3), suggesting that Aifm3 might be a new target in ischemic stroke therapy. This study provides a flexible plug-and-play strategy for the easy-to-implement synthesis of structurally diverse bibenzyls through a modular co-culture engineering pipeline for drug discovery.

11.
Acta Pharm Sin B ; 13(1): 271-283, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815054

RESUMEN

Astragalosides are the main active constituents of traditional Chinese medicine Huang-Qi, of which cycloastragenol-type glycosides are the most typical and major bioactive compounds. This kind of compounds exhibit various biological functions including cardiovascular protective, neuroprotective, etc. Owing to the limitations of natural sources and the difficulties encountered in chemical synthesis, re-engineering of biosynthetic machinery will offer an alternative and promising approach to producing astragalosides. However, the biosynthetic pathway for astragalosides remains elusive due to their complex structures and numerous reaction types and steps. Herein, guided by transcriptome and phylogenetic analyses, a cycloartenol synthase and four glycosyltransferases catalyzing the committed steps in the biosynthesis of such bioactive astragalosides were functionally characterized from Astragalus membranaceus. AmCAS1, the first reported cycloartenol synthase from Astragalus genus, is capable of catalyzing the formation of cycloartenol; AmUGT15, AmUGT14, AmUGT13, and AmUGT7 are four glycosyltransferases biochemically characterized to catalyze 3-O-xylosylation, 3-O-glucosylation, 25-O-glucosylation/O-xylosylation and 2'-O-glucosylation of cycloastragenol glycosides, respectively. These findings not only clarified the crucial enzymes for the biosynthesis and the molecular basis for the structural diversity of astragalosides in Astragalus plants, also paved the way for further completely deciphering the biosynthetic pathway and constructing an artificial pathway for their efficient production.

12.
J Agric Food Chem ; 71(3): 1679-1689, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36633228

RESUMEN

Flavanone 3-hydroxylases (F3Hs) belong to the 2-oxoglutarate-dependent dioxygenase family and play an important role in plant flavonoid biosynthesis. However, the stereoselective catalytic mechanism and substrate promiscuity of this type of enzyme are not well understood. In this study, we identified and biochemically characterized CtF3H1, an F3H from Carthamus tinctorius, a plant used in traditional Chinese medicine that exhibits high stereoselectivity and substrate promiscuity toward structurally diverse (2S)-flavanones. Isothermal titration calorimetry revealed that CtF3H1 exhibits distinctly different binding behaviors with (2S)-flavanone (2S-naringenin) and (2R)-flavanone (2R-naringenin), and these differences govern its stereoselectivity. An investigation of the structure-activity relationships between the enzyme and its substrates demonstrated that 7-OH and/or 4'-OH are necessary for regio- and stereoselective 3-hydroxylation of (2S)-flavanones. Homology modeling and molecular docking combined with site-directed mutagenesis identified the amino acid residues necessary for hydroxylation. These findings demonstrate the potential versatility of CtF3H1 in regio- and stereohydroxylation and provide molecular insights into the catalytic mechanism of F3H for further enzyme engineering.


Asunto(s)
Carthamus tinctorius , Flavanonas , Carthamus tinctorius/genética , Carthamus tinctorius/metabolismo , Simulación del Acoplamiento Molecular , Oxigenasas de Función Mixta/metabolismo , Flavanonas/metabolismo , Plantas/metabolismo
13.
J Asian Nat Prod Res ; 25(7): 667-673, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36272133

RESUMEN

Anhydroicaritin (1a), baohuoside (1b) and icariin (1c) were recognized as major pharmacologically active ingredients of Epimedium plants. Their primary means of acquisition were chemical isolation from plants. However, it suffers from low yield, environmental pollution and shortage of plants. Herein, to remedy these problems, biosynthesis was explored to obtain the three active ingredients. Fortunately, with SfFPT as 8-prenyltransferase, EpPF3RT and Ep7GT as glycosyltransferases, kaempferide (1) was transferred to 1a, 1b and 1c enzymatically. Thus, we report the details of this method. This approach represents a promising environmental friendly alternative for the production of these compounds from an abundant analogue.


Asunto(s)
Benzopiranos , Flavonoides , Flavonoides/química , Glicosiltransferasas , Plantas
14.
Chin J Nat Med ; 20(10): 721-728, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36307194

RESUMEN

Hyperforin is a representative polycyclic polyprenylated acylphloroglucinols (PPAPs) that exerts a variety of pharmacological activities. The complete biosynthesis pathway of hyperforin has not been elucidated due to its complex structure and unclear genetic background of its source plants. This mini-review focuses on the bioactivity and biosynthesis of hyperforin. These analyses can provide useful insights into the biosynthesis investigations of hyperforin and other PPAPs with complex structures.


Asunto(s)
Hypericum , Floroglucinol , Floroglucinol/farmacología , Floroglucinol/química , Terpenos/farmacología , Terpenos/química , Hypericum/química , Estructura Molecular
15.
Fitoterapia ; 162: 105295, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36087822

RESUMEN

Three pairs of enantiomeric bibenzyl dimers, (±)-dengratiols E-G [(±)-1-3], were obtained through various chromatographic techniques including chiral HPLC, from the ethanol extract of Dendrobium gratiosissimum. Their structures were elucidated to be R-(+)-1 and S-(-)-1, R-(+)-2 and S-(-)-2, and αR, α'R-(-)-3 and αS, α'S-(+)-3 on the basis of the extensive spectroscopic data and ECD analyses, respectively. The isolated enantiomerically pure along with their racemic forms showed moderate cytotoxicity against human HCT116, U87-MG, HepG2, BGC823, and PC9 cancer cell lines (IC50 9.25-48.01 µM). Enantiomers (+)-1 and (-)-1, and their racemate (±)-1 showed antiviral effects against HIV-1 with IC50 values of 12.26, 6.01, and 4.47 µM, respectively. Enantiomers (+)-2, and (-)-2 and their racemic form showed significant protein tyrosine phosphatase 1B (PTP1B) inhibitory activity with IC50 values of 5.07, 3.11, and 4.37 µM, respectively.


Asunto(s)
Bibencilos , Dendrobium , Antivirales , Dendrobium/química , Etanol , Humanos , Estructura Molecular , Extractos Vegetales , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Compuestos de Sulfhidrilo
16.
Phytochemistry ; 201: 113260, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35667577

RESUMEN

Eight C6-C3-based bibenzyl derivatives (dengraphenols A-G, K), three mono-bibenzyls (dengraphenols I, L-M), one bis-bibenzyl (dengraphenol H), one oxyneolignane (dengraphenol J), one phenanthrene (dengraphenol N), and one picrotoxane-type sesquiterpene (dengrasusane A) were isolated from the stems of Dendrobium gratiosissimum. The resolution of dengraphenols A-J by chiral HPLC afforded ten pairs of enantiomers [(±)-dengraphenols A-J]. Their structures with absolute configurations were elucidated on the basis of comprehensive spectroscopic analyses, computational calculation methods and single-crystal X-ray diffraction, among which twenty-four [(±)-dengraphenols A-E, (+)-dengraphenol F, (±)-dengraphenols G-J, dengraphenols K-N, dengrasusane A] were undescribed. Ten compounds [(±)-dengraphenol B, (±)-dengraphenols D-E, (±)-dengraphenol H, (-)-dengraphenol I and dengraphenol N)] showed potent cytotoxicity against eight human cancer cell lines (A431, A2780, H460, HCT8, BGC823, SW1990, Daoy, and HGC27) with IC50 values of 3.77-9.75 µM. At a concentration of 10 µM, (-)-dengraphenol C, (±)-dengraphenol F, and (±)-dengraphenol K exhibited remarkable hepatoprotective activity against APAP-induced toxicity with a cell survival rate of 65.8%, 70.6% and 73.5%, respectively; dengraphenol N displayed significant anti-inflammatory effects; and dengraphenol K showed strong inhibitory activity against α-glucosidase with IC50 values of 5.71 µM. These results would provide potential compounds for drug discovery.


Asunto(s)
Bibencilos , Dendrobium , Neoplasias Ováricas , Bibencilos/química , Bibencilos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Dendrobium/química , Femenino , Humanos , Estructura Molecular , Tallos de la Planta
17.
J Asian Nat Prod Res ; 24(6): 535-541, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34180320

RESUMEN

Peridecalins C and D (1 and 2), one decalin and one oxygen-decalin containing polyketide-amino acid hybrids with 5/6/6 ring system, was isolated from a genetic mutant of Periconia sp. F-31. Their structures were elucidated through extensive spectroscopic data analysis, including 1 D/2D NMR and HR-MS spectra. Biosynthetically, two proposed Diels-Alder reactions are supposed to be involved in the skeleton construction of 1 and 2.


Asunto(s)
Ascomicetos , Policétidos , Aminoácidos , Ascomicetos/química , Estructura Molecular
18.
J Asian Nat Prod Res ; 24(4): 397-402, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34128441

RESUMEN

One new eremophilane sesquiterpene periconianone L (1), together with four known guaiane-type sesquiterpenes 4,10,11-trihydroxyguaiane (2), (-)-guai-1(10)-ene-4α,11-diolhydroxymecuration (3), guaidiol A (4), and epi-guaidiol A (5) were isolated from the endophytic fungus Periconia sp. F-31. The structure of the new compound was established by spectroscopic methods, including UV, IR, HRESIMS, and extensive NMR techniques. Compound 3 was isolated as natural product for the first time.


Asunto(s)
Ascomicetos , Sesquiterpenos , Ascomicetos/química , Estructura Molecular , Sesquiterpenos Policíclicos , Sesquiterpenos/química
19.
Fitoterapia ; 152: 104926, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33991602

RESUMEN

Dengratiol A (1), an unprecedented bibenzyl derivative bearing a tropolone unit together with three pairs of bibenzyl enantiomers (±)-dengratiols B-D [(±)-2-(±)-4], were isolated from Dendrobium gratiossimum Rchb.f. The resolution of enantiomers was performed with chiral HPLC. Their structures were characterized by extensive spectroscopic data analysis and calculated electronic circular dichroism (ECD). A hypothetical biosynthetic pathway for 1 is proposed. Biological assay revealed that (-)-2 showed moderate antiviral effect against IAV with IC50 value of 6.3 µM, and (±)-2 displayed cytotoxic activities against five human tumor cell lines with IC50 values ranging from 15.5 to 42.5 µM.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Bibencilos/farmacología , Dendrobium/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Bibencilos/aislamiento & purificación , Línea Celular Tumoral , China , Humanos , Estructura Molecular , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Tallos de la Planta/química
20.
Front Chem ; 8: 596889, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195106

RESUMEN

Fourteen new eremophilane-type sesquiterpenoids, named rhizoperemophilanes A~N (1~14), together with eight known congeners, were isolated from the culture of the endophytic fungus Rhizopycnis vagum. The structures of the new compounds were elucidated by extensive spectroscopic analyses, as well as ECD calculations and the modified Mosher's method for the assignment of the absolute configurations. Rhizoperemophilane J (10) contains an uncommon C-4/C-11 epoxy ring, while rhizoperemophilane N (14) features an unprecedented 3-nor-eremophilane lactone-lactam skeleton. These metabolites were evaluated for their antibacterial, cytotoxic, and phytotoxic activities. Among them, compounds 11, 16, and 20 displayed antibacterial activities, while 14 showed selective cytotoxicity against NCI-H1650 and BGC823 tumor cells. Moreover, compounds 5, 6, 12, 13, 16, and 19 exhibited strong phytotoxic activities against the radicle elongation of rice seedlings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...