Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Open Life Sci ; 19(1): 20220861, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681727

RESUMEN

Neuroinflammation, characterized by microglial activation and the subsequent secretion of inflammatory cytokines, plays a pivotal role in neurodegenerative diseases and brain injuries, often leading to neuronal damage and death. Alleviating neuroinflammation has thus emerged as a promising strategy to protect neurons and ameliorate neurodegenerative disorders. While peroxisome proliferator-activated receptor gamma (PPARγ) agonists have demonstrated potential therapeutic actions on neuroinflammation, their prolonged use, such as with rosiglitazone, can lead to cardiac risks and lipid differentiation disorders. In this study, we investigated the effects of a newly synthesized PPARγ agonist, VSP-2, on secretion of inflammatory cytokines in BV2 cells. Treatment with VSP-2 significantly reduced the mRNA and protein levels of proinflammatory cytokines such as interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, VSP-2 attenuated the phosphorylation of nuclear factor kappa B (NF-κB) (65 kD) and IκBα, as well as the nuclear translocation of NF-κB (65 kD). Additionally, the use of PPARγ small interfering RNA was able to attenuate the effects of VSP-2 on proinflammatory cytokines and the NF-κB pathway. In conclusion, our findings suggest that VSP-2 effectively suppressed the expressions of IL-1ß, IL-6, and TNF-α via the PPARγ/NF-κB signaling pathway. Given its potential therapeutic benefits, VSP-2 may emerge as a promising candidate for the treatment of neurodegenerative diseases or brain injuries associated with neuroinflammation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...