Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Gene Med ; 26(5): e3685, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686653

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is identified as one of the most prevalent and malignant brain tumors, characterized by poor treatment outcomes and a limited prognosis. CMTM6, a membrane protein, has been found to upregulate the expression of programmed cell death 1 ligand 1 protein (PD-L1) and acts as an immune checkpoint inhibitor by inhibiting the programmed death 1 protein/PD-L1 signaling pathway. Recent research has demonstrated a high expression of CMTM6 in GBM, suggesting its potential role in influencing the pathogenesis and progression of GBM, as well as its association with immune cell infiltration in the tumor microenvironment. However, the underlying mechanism of CMTM6 in GBM requires further investigation. METHODS: Data from cancer patients in The Cancer Genome Atlas, Gene Expression Omnibus and Chinese Glioma Genome Atlas cohorts were consolidated for the current study. Through multi-omics analysis, the study systematically examined the expression profile of CMTM6, epigenetic modifications, prognostic significance, biological functions, potential mechanisms of action and alterations in the immune microenvironment. Additionally, the study investigated CMTM6 expression in GBM cell lines and normal cells using reverse transcription PCR and western blot analysis. The impact of CMTM6 on GBM cell proliferation, migration and invasion was evaluated using a combination of cell counting kit-8 assay, clone formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, wound healing assay and Transwell assay. In order to explore the mechanism of CMTM6, the Wnt/ß-catenin signaling pathway and autophagy-related genes were further verified through western blot analysis. RESULTS: CMTM6 is highly expressed in multiple tumors, particularly GBM. CMTM6 has been shown to be a valuable diagnostic and prognostic biomarker by various bioinformatics approaches. Additionally, CMTM6 plays a pivotal role in the pathogenesis of cancer, specifically GBM, by modulating various biological processes such as DNA methyltransferase expression, RNA modification, copy number variation, genomic heterogeneity, tumor stemness and DNA methylation. The findings of the experiment indicate a significant correlation between elevated CMTM6 expression and the proliferation, invasion, migration and autophagy of GBM cells, with potential key roles mediated through the Wnt/ß-catenin signaling pathway. Furthermore, CMTM6 is implicated in modulating tumor immune cell infiltration and is closely linked to the expression of various immune checkpoint inhibitors and immune modulators, particularly within the context of GBM. High levels of CMTM6 expression also enhance the responsiveness of GBM patients to radiotherapy and chemotherapy, thereby offering valuable insights for guiding treatment strategies for GBM. CONCLUSIONS: Autophagy-related CMTM6 is highly expressed in various types of cancer, especially GBM, and it can regulate GBM progression through the Wnt/ß-catenin signaling pathway and is capable of being used as an underlying target for the diagnosis, treatment selection and prognosis of patients with GBM.


Asunto(s)
Autofagia , Biomarcadores de Tumor , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioblastoma , Proteínas con Dominio MARVEL , Microambiente Tumoral , Vía de Señalización Wnt , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Proteínas con Dominio MARVEL/metabolismo , Proteínas con Dominio MARVEL/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Autofagia/genética , Pronóstico , Proliferación Celular , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Movimiento Celular/genética , beta Catenina/metabolismo , beta Catenina/genética
4.
Hum Genomics ; 18(1): 13, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311757

RESUMEN

Many researchers have explored the potential association between one neurosurgical disease and coronavirus disease 2019 (COVID-19), but few systematically analyzed the association and causality between COVID-19 and various neurosurgical diseases. A Mendelian randomization analysis was conducted to evaluate the causal association between COVID-19 (including critically ill COVID-19, hospitalized COVID-19, and respiratory syndrome coronavirus 2 (SARS-CoV-2) infection) and 30 neurosurgical diseases within European populations. The consequences of inverse variance weighted models suggest that genetic susceptibility of critically ill COVID-19 may increase the risk of cerebral infarction (odds ratio [OR] = 1.02; p-value = 0.006), genetic susceptibility of SARS-CoV-2 infection may increase the risk of stroke (OR = 1.02; p-value = 0.047), and conversely, genetic susceptibility of hospitalized COVID-19 may reduce the risk of pituitary adenoma and craniopharyngioma (OR = 0.90; p-value = 0.032). In addition, evidences revealed potential associations between genetic susceptibility of COVID-19 and spinal stenosis (OR = 1.03; p-value = 0.028), diffuse brain injury (OR = 1.21; p-value = 0.040) and focal brain injury (OR = 1.12; p-value = 0.040). By testing for heterogeneity and pleiotropy, the above causal conclusions are robust. In summary, our analysis shows that COVID-19 has an independent and powerful causal influence on multiple neurosurgical disorders.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Enfermedad Crítica , Análisis de la Aleatorización Mendeliana , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo
5.
BMC Cancer ; 23(1): 1249, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114959

RESUMEN

Glioblastoma multiforme (GBM) is recognized as the prevailing malignant and aggressive primary brain tumor, characterized by an exceedingly unfavorable prognosis. Cuproptosis, a recently identified form of programmed cell death, exhibits a strong association with cancer progression, therapeutic response, and prognostic outcomes. However, the specific impact of cuproptosis on GBM remains uncertain. To address this knowledge gap, we obtained transcriptional and clinical data pertaining to GBM tissues and their corresponding normal samples from various datasets, including TCGA, CGGA, GEO, and GTEx. R software was utilized for the analysis of various statistical techniques, including survival analysis, cluster analysis, Cox regression, Lasso regression, gene enrichment analysis, drug sensitivity analysis, and immune microenvironment analysis. Multiple assays were conducted to investigate the expression of genes related to cuproptosis and their impact on the proliferation, invasion, and migration of glioblastoma multiforme (GBM) cells. The datasets were obtained and prognostic risk score models were constructed and validated using differentially expressed genes (DEGs) associated with cuproptosis. To enhance the practicality of these models, a nomogram was developed.Patients with glioblastoma multiforme (GBM) who were classified as high risk exhibited a more unfavorable prognosis and shorter overall survival compared to those in the low risk group. Additionally, we specifically chose FDX1 from the differentially expressed genes (DEGs) within the high risk group to assess its expression, prognostic value, biological functionality, drug responsiveness, and immune cell infiltration. The findings demonstrated that FDX1 was significantly upregulated and associated with a poorer prognosis in GBM. Furthermore, its elevated expression appeared to be linked to various metabolic processes and the susceptibility to chemotherapy drugs. Moreover, FDX1 was found to be involved in immune cell infiltration and exhibited correlations with multiple immunosuppressive genes, including TGFBR1 and PDCD1LG2. The aforementioned studies offer substantial assistance in informing the chemotherapy and immunotherapy approaches for GBM. In summary, these findings contribute to a deeper comprehension of cuproptosis and offer novel perspectives on the involvement of cuproptosis-related genes in GBM, thereby presenting a promising therapeutic strategy for GBM patients.


Asunto(s)
Ferredoxinas , Glioblastoma , Humanos , Apoptosis , Cobre , Ferredoxinas/genética , Ferredoxinas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Inmunoterapia , Pronóstico , Microambiente Tumoral/genética
6.
J Cell Mol Med ; 27(15): 2194-2214, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315184

RESUMEN

Suppressor of cytokine signalling (SOCS) 1/2/3/4 are involved in the occurrence and progression of multiple malignancies; however, their prognostic and developmental value in patients with glioblastoma (GBM) remains unclear. The present study used TCGA, ONCOMINE, SangerBox3.0, UALCAN, TIMER2.0, GENEMANIA, TISDB, The Human Protein Atlas (HPA) and other databases to analyse the expression profile, clinical value and prognosis of SOCS1/2/3/4 in GBM, and to explore the potential development mechanism of action of SOCS1/2/3/4 in GBM. The majority of analyses showed that SOCS1/2/3/4 transcription and translation levels in GBM tissues were significantly higher than those in normal tissues. qRT-PCR, western blotting (WB) and immunohistochemical staining were used to verify that SOCS3 was expressed at higher mRNA and protein levels in GBM than in normal tissues or cells. High SOCS1/2/3/4 mRNA expression was associated with poor prognosis in patients with GBM, especially SOCS3. SOCS1/2/3/4 were highly contraindicated, which had few mutations, and were not associated with clinical prognosis. Furthermore, SOCS1/2/3/4 were associated with the infiltration of specific immune cell types. In addition, SOCS3 may affect the prognosis of patients with GBM through JAK/STAT signalling pathway. Analysis of the GBM-specific protein interaction (PPI) network showed that SOCS1/2/3/4 were involved in multiple potential carcinogenic mechanisms of GBM. In addition, colony formation, Transwell, wound healing and western blotting assays revealed that inhibition of SOCS3 decreased the proliferation, migration and invasion of GBM cells. In conclusion, the present study elucidated the expression profile and prognostic value of SOCS1/2/3/4 in GBM, which may provide potential prognostic biomarkers and therapeutic targets for GBM, especially SOCS3.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Pronóstico , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , ARN Mensajero/metabolismo , Biomarcadores
7.
BMC Cancer ; 23(1): 102, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717836

RESUMEN

BACKGROUND: CD276 (also known as B7-H3) is one of the most important immune checkpoints of the CD28 and B7 superfamily, and its abnormal expression is closely associated with various types of cancer. It has been shown that CD276 is able to inhibit the function of T cells, and that this gene may potentially be a promising immunotherapy target for different types of cancer. METHODS: Since few systematic studies have been published on the role of CD276 in cancer to date, the present study has employed single-cell sequencing and bioinformatics methods to analyze the expression patterns, clinical significance, prognostic value, epigenetic alterations, DNA methylation level, tumor immune cell infiltration and immune functions of CD276 in different types of cancer. In order to analyze the potential underlying mechanism of CD276 in glioblastoma (GBM) to assess its prognostic value, the LinkedOmics database was used to explore the biological function and co-expression pattern of CD276 in GBM, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. In addition, a simple validation of the above analyses was performed using reverse transcription-quantitative (RT-q)PCR assay. RESULTS: The results revealed that CD276 was highly expressed, and was often associated with poorer survival and prognosis, in the majority of different types of cancer. In addition, CD276 expression was found to be closely associated with T cell infiltration, immune checkpoint genes and immunoregulatory interactions between lymphoid and a non-lymphoid cell. It was also shown that the CD276 expression network exerts a wide influence on the immune activation of GBM. The expression of CD276 was found to be positively correlated with neutrophil-mediated immunity, although it was negatively correlated with the level of neurotransmitters, neurotransmitter transport and the regulation of neuropeptide signaling pathways in GBM. It is noteworthy that CD276 expression was found to be significantly higher in GBM compared with normal controls according to the RT-qPCR analysis, and the co-expression network, biological function and chemotherapeutic drug sensitivity of CD276 in GBM were further explored. In conclusion, the findings of the present study have revealed that CD276 is strongly expressed and associated with poor prognosis in most types of cancer, including GBM, and its expression is strongly associated with T-cell infiltration, immune checkpoint genes, and immunomodulatory interactions between lymphocytes and non-lymphoid cells. CONCLUSIONS: Taken together, based on our systematic analysis, our findings have revealed important roles for CD276 in different types of cancers, especially GBM, and CD276 may potentially serve as a biomarker for cancer.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/genética , Pronóstico , Multiómica , Genes Reguladores , Factores de Transcripción , Antígenos B7/genética
8.
Cell Prolif ; 56(3): e13375, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36457281

RESUMEN

Glioblastoma multiforme (GBM) is the most malignant and aggressive type of glioma. Non-coding RNAs (ncRNAs) are RNAs that do not encode proteins but widely exist in eukaryotic cells. The common characteristics of these RNAs are that they can all be transcribed from the genome without being translated into proteins, thus performing biological functions, particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs. Studies have found that ncRNAs are associated with the occurrence and development of GBM, and there is a complex regulatory network among ncRNAs, which can regulate cell proliferation, migration, apoptosis and differentiation, thus provide a basis for the development of highly specific diagnostic tools and therapeutic strategies in the future. The present review aimed to comprehensively describe the biogenesis, general features and functions of regulatory ncRNAs in GBM, and to interpret the potential biological functions of these ncRNAs in GBM as well as their impact on clinical diagnosis, treatment and prognosis and discusses the potential mechanisms of these RNA subtypes leading to cancer in order to contribute to the better design of personalized GBM therapies in the future.


Asunto(s)
Glioblastoma , Glioma , MicroARNs , ARN Largo no Codificante , Humanos , Glioblastoma/patología , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Circular
9.
Front Oncol ; 12: 896433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646697

RESUMEN

Metabolic reprogramming is a hallmark of glioma, and sterol O-acyltransferase 1 (SOAT1) is an essential target for metabolic therapy. However, the prognostic value of SOAT1 and its association with immune infiltration has not been fully elucidated. Using RNA-seq and clinical data of glioma patients from The Cancer Genome Atlas (TCGA), SOAT1 was found to be correlated with poor prognosis in glioma and the advanced malignancy of clinicopathological characteristics. Next, the correlation between SOAT1 expression and tumor-infiltrating immune cells was performed using the single-sample GSEA algorithm, gene expression profiling interactive analysis (GEPIA), and tumor immune estimation resource version 2 (TIMER2.0); it was found that SOAT1 expression was positively correlated with multiple tumor-infiltrating immune cells. To further verify these results, immunofluorescence was conducted on paraffin-embedded glioma specimens, and a positive trend of the correlation between SOAT1 expression and Treg infiltration was observed in this cohort. Finally, differentially expressed gene analysis, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed to explore the biological processes and signaling pathways that SOAT1 may be involved in during glioma pathogenesis. A protein-protein interaction network was established, and co-expression analysis was conducted to investigate the regulatory mechanism of SOAT1 in glioma. To the best of our knowledge, this is the first comprehensive study reporting that SOAT1 may serve as a novel prognostic biomarker associated with immune infiltrates, providing a novel perspective for glioma metabolic therapy.

10.
Front Oncol ; 12: 881801, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600392

RESUMEN

The suppressor of cytokine signaling (SOCS) family contains eight members, including SOCS1-7 and CIS, and SOCS3 has been shown to inhibit cytokine signal transduction in various signaling pathways. Although several studies have currently shown the correlations between SOCS3 and several types of cancer, no pan-cancer analysis is available to date. We used various computational tools to explore the expression and pathogenic roles of SOCS3 in several types of cancer, assessing its potential role in the pathogenesis of cancer, in tumor immune infiltration, tumor progression, immune evasion, therapeutic response, and prognostic. The results showed that SOCS3 was downregulated in most The Cancer Genome Atlas (TCGA) cancer datasets but was highly expressed in brain tumors, breast cancer, esophageal cancer, colorectal cancer, and lymphoma. High SOCS3 expression in glioblastoma multiforme (GBM) and brain lower-grade glioma (LGG) were verified through immunohistochemical experiments. GEPIA and Kaplan-Meier Plotter were used, and this bioinformatics analysis showed that high SOCS3 expression was associated with a poor prognosis in the majority of cancers, including LGG and GBM. Our analysis also indicated that SOCS3 may be involved in tumor immune evasion via immune cell infiltration or T-cell exclusion across different types of cancer. In addition, SOCS3 methylation was negatively correlated with mRNA expression levels, worse prognoses, and dysfunctional T-cell phenotypes in various types of cancer. Next, different analytical methods were used to select genes related to SOCS3 gene alterations and carcinogenic characteristics, such as STAT3, SNAI1, NFKBIA, BCL10, TK1, PGS1, BIRC5, TMC8, and AFMID, and several biological functions were identified between them. We found that SOCS3 was involved in cancer development primarily through the JAK/STAT signaling pathway and cytokine receptor activity. Furthermore, SOCS3 expression levels were associated with immunotherapy or chemotherapy for numerous types of cancer. In conclusion, this study showed that SOCS3 is an immune-oncogenic molecule that may possess value as a biomarker for diagnosis, treatment, and prognosis of several types of cancer in the future.

11.
J Cancer ; 13(6): 1745-1757, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399707

RESUMEN

Glioblastoma (GBM) is the most lethal malignant tumor in the central nervous system, with a median survival of only 14 months. Cholesterol, which is the main component of cell membrane and the precursor of many hormones, is one of the most important lipid components in human body. Since reprogramming of the cholesterol metabolic profile has been discovered in many cancers including GBM, cholesterol metabolism becomes a promising potential target for therapy. Since GBM cells rely on external cholesterol to survive and accumulate lipid droplets to meet their rapid growth needs, targeting the metabolism of cholesterol by different strategies including inhibition of cholesterol uptake and promotion of cholesterol efflux by activating LXRs and disruption of cellular cholesterol trafficking, inhibition of SREBP signaling, inhibition of cholesterol esterification, could potentially oppose the growth of glial tumors. In this review, we discussed the above findings and describe cholesterol synthesis and homeostatic feedback pathways in normal brain tissues and brain tumors, statin use in GBM and the role of lipid rafts and cholesterol precursors and oxysterols in the treatment and pathogenesis of GBM are also summarized.

12.
Front Cell Dev Biol ; 10: 805291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223836

RESUMEN

Introduction: Pyroptosis was recently implicated in the initiation and progression of tumors, including glioblastoma (GBM). This study aimed to explore the clinical significance of pyroptosis-related lncRNAs (PRLs) in GBM. Methods: Three independent cohorts were retrieved from the TCGA and CGGA databases. The consensus clustering and weighted gene coexpression network analysis (WGCNA) were applied to identify PRLs. The LASSO algorithm was employed to develop and validate a pyroptosis-related lncRNA signature (PRLS) in three independent cohorts. The molecular characteristics, clinical significances, tumor microenvironment, immune checkpoints profiles, and benefits of chemotherapy and immunotherapy regarding to PRLS were also explored. Results: In the WGCNA framework, a key module that highly correlated with pyroptosis was extracted for identifying PRLs. Univariate Cox analysis further revealed the associations between PRLs and overall survival. Based on the expression profiles of PRLs, the PRLS was initially developed in TCGA cohort (n = 143) and then validated in two CGGA cohorts (n = 374). Multivariate Cox analysis demonstrated that our PRLS model was an independent risk factor. More importantly, this signature displayed a stable and accurate performance in predicting prognosis at 1, 3, and 5 years, with all AUCs above 0.7. The decision curve analysis also indicated that our signature had promising clinical application. In addition, patients with high PRLS score suggested a more abundant immune infiltration, higher expression of immune checkpoint genes, and better response to immunotherapy but worse to chemotherapy. Conclusion: A novel pyroptosis-related lncRNA signature with a robust performance was constructed and validated in multiple cohorts. This signature provided new perspectives for clinical management and precise treatments of GBM.

13.
Oncol Lett ; 23(1): 5, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34820004

RESUMEN

Glioblastoma multiforme (GBM) is the most common type of primary brain tumor in adults. GBM is characterized by a high degree of malignancy and aggressiveness, as well as high morbidity and mortality rates. GBM is currently treatable via surgical resection, chemotherapy and radiotherapy, but the prognosis of patients with GBM is poor. The suppressor of cytokine signaling (SOCS) protein family comprises eight members, including SOCS1-SOCS7 and cytokine-inducible SH2-containing protein. SOCS proteins regulate the biogenesis of GBM via the JAK/STAT and NF-κB signaling pathways. Driven by NF-κB, the expression of SOCS proteins can serve as a negative regulator of the JAK/STAT signaling pathway and exerts a potential inhibitory effect on GBM. In GBM, E3 ubiquitin ligase is involved in the regulation of cellular functions, such as the receptor tyrosine kinase (RTK) survival signal, in which SOCS proteins negatively regulate RTK signaling, and kinase overexpression or mutation can lead to the development of malignancies. Moreover, SOCS proteins affect the proliferation and differentiation of GBM cells by regulating the tumor microenvironment. SOCS proteins also serve specific roles in GBM of different grades and different isocitrate dehydrogenase mutation status. The aim of the present review was to describe the biogenesis and function of the SOCS protein family, the roles of SOCS proteins in the microenvironment of GBM, as well as the role of this protein family and E3 ubiquitin ligases in GBM. Furthermore, the role of SOCS proteins as diagnostic and prognostic markers in GBM and their potential role as GBM therapeutics were explored.

14.
Biomed Pharmacother ; 146: 112585, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34968923

RESUMEN

The balance between ubiquitination and deubiquitination is crucial for protein stability, function and location under physiological conditions. Dysregulation of E1/E2/E3 ligases or deubiquitinases (DUBs) results in malfunction of the ubiquitin system and is involved in many diseases. Increasing reports have indicated that ubiquitin-specific peptidases (USPs) play a part in the progression of many kinds of cancers and could be good targets for anticancer treatment. Glioma is the most common malignant tumor in the central nervous system. Clinical treatment for high-grade glioma is unsatisfactory thus far. Multiple USPs are dysregulated in glioma and have the potential to be therapeutic targets. In this review, we collected studies on the roles of USPs in glioma progression and summarized the mechanisms of USPs in glioma tumorigenesis, malignancy and chemoradiotherapy resistance.


Asunto(s)
Glioma/fisiopatología , Ubiquitina-Proteína Ligasas/fisiología , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación/fisiología , Animales , Autofagia/fisiología , Carcinogénesis/metabolismo , Reparación del ADN/fisiología , Resistencia a Antineoplásicos/fisiología , Humanos , Tolerancia a Radiación/fisiología , Transducción de Señal/fisiología
15.
Biomed Pharmacother ; 144: 112262, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34607102

RESUMEN

As a member of the suppressor of cytokine signaling (SOCS) family, SOCS3 is a cytokine-inducible protein that inhibits cytokine signaling in a variety of signaling pathways. Increasing evidence shows that SOCS3 regulates tumor development through multiple pathological and physiological processes. It is worth mentioning that SOCS3 negatively regulates JAK/STAT signaling by binding to JAK/cytokine receptors or phosphorylation docking sites on STAT receptors, thus preventing tumor cell proliferation and inhibiting tumor cell invasion and metastasis. The kinase inhibitory region KIR of SOCS3 is the key to JAK inhibition. In addition, SOCS3 may also regulate tumor progression through other molecules or signaling pathways, such as microRNAs (miRNAs), IL-6 and NF-κB signaling pathway. MicroRNAs inhibit SOCS3 expression by binding to the 3' untranslated region of SOCS3 mRNA, thus regulating tumor development processes, including tumor cell proliferation, invasion, metastasis, differentiation, cell cycle and apoptosis, as well as tumor metastasis and chemotherapy resistance. On the whole, SOCS3 acts as an inhibitor of the majority of tumors through various pathways. In the present review, the role of SOCS3 in multitudinous tumors was comprehensively summarized, the molecular mechanisms and modes of action of SOCS3 in tumors were discussed, and the association between SOCS3 expression and the clinical characteristics of patients with cancer were emphasized.


Asunto(s)
Neoplasias/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Antineoplásicos/uso terapéutico , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Quinasas Janus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Invasividad Neoplásica , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética
16.
Bioengineered ; 12(1): 5348-5360, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34415831

RESUMEN

There is some evidence supporting an association between Cullin-5 (CUL5) and cancer, but no research using pan-cancer analysis has been conducted previously. We therefore investigated the oncogenic role of CUL5 in 33 tumors from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Many cancers reduce CUL5 levels, and the prognosis of certain cancers is vitally linked with CUL5 expression. CUL5 expression is associated with CD8 + T-cell infiltration levels in uveal melanomas and head and neck squamous cell carcinomas, and we observed a positive relationship between CUL5 and Tcm (T central memory) cells, and a negative relationship between T helper (Th) cells and pDC (plasmacytoid DC). CUL5 had negative associations with NK cells, NK CD56bright cells, NK CD56dim cells, Tregs, cytotoxic cells, and Th17 cells. Functions relating to protein processing and ubiquitin were included in the CUL5 functional mechanisms. The top 100 genes that are most strongly related to CUL5 were identified, and enrichment analysis indicated that the biological process with the closest relationship was neddylation, related pathways included the TGF-beta signaling pathway and intracellular receptor signaling pathway. CUL5 is related to biological cell behaviors such as chromosome segregation and positive regulation of chromosome organization. As the first study to perform a pan-cancer analysis of CUL5, the present findings will improve the understanding of the oncogenic role of CUL5 in different tumors.


Asunto(s)
Proteínas Cullin , Neoplasias , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...