RESUMEN
Trichomes, which originate from the epidermal cell of aerial organs, provide plants with defense and secretion functions. Although numerous genes have been implicated in trichome development, the molecular mechanisms underlying trichome cell formation in plants remain incompletely understood. Here, we using genome-wide association study (GWAS) across 1037 diverse accessions in upland cotton (Gossypium hirsutum) to identify three loci associated with leaf pubescence (hair) amount, located on chromosome A06 (LPA1), A08 (LPA2) and A11 (LPA3), respectively. GhHD1, a previously characterized candidate gene, was identified on LPA1 and encodes an HD-Zip transcription factor. For LPA2 and LPA3, we identified two candidate genes, GhGIR1 and GhGIR2, both encoding proteins with WD40 and RING domains that act as inhibitors of leaf hair formation. Expression analysis revealed that GhHD1 was predominantly expressed in hairy accessions, whereas GhGIR1 and GhGIR2 were expressed in hairless accessions. Silencing GhHD1 or overexpressing GhGIR1 in hairy accessions induced in a hairless phenotype, whereas silencing GhGIR2 in hairless accessions resulted in a hairy phenotype. We also demonstrated that GhHD1 interact with both GhGIR1 and GhGIR2, and GhGIR1 can interact with GhGIR2. Further investigation indicated that GhHD1 functions as a transcriptional activator, binding to the promoters of the GhGIR1 and GhGIR2 to active their expression, whereas GhGIR1 and GhGIR2 can suppress the transcriptional activation of GhHD1. Our findings shed light on the intricate regulatory network involving GhHD1, GhGIR1 and GhGIR2 in the initiation and development of plant epidermal hairs in cotton.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Gossypium , Hojas de la Planta , Proteínas de Plantas , Tricomas , Gossypium/genética , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tricomas/genética , Tricomas/crecimiento & desarrollo , Tricomas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton. This locus encodes gibberellin 2-oxidase 1A (GhPH1) and features a 1133-bp structural variation (PAVPH1) located approximately 16 kb upstream. The presence or absence of PAVPH1 influences the expression of GhPH1, thereby affecting plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes and binds to a specific CATTTG motif in both the GhPH1 promoter and PAVPH1. This interaction downregulates GhPH1, indicating that PAVPH1 functions as a distant upstream silencer. Intriguingly, we found that DWARF53 (D53), a key repressor of the strigolactone (SL) signaling pathway, directly interacts with GhGARF to inhibit its binding to targets. Moreover, we identified a previously unrecognized gibberellin-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAVPH1 module, which is crucial for regulating plant height in upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height, providing valuable insights for the development of semi-dwarf cotton varieties through precise modulation of GhPH1 expression.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Gossypium , Proteínas de Plantas , Gossypium/genética , Gossypium/metabolismo , Gossypium/crecimiento & desarrollo , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lactonas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Estudio de Asociación del Genoma Completo , Regiones Promotoras Genéticas/genéticaRESUMEN
INTRODUCTION: Defoliation by applying defoliants before machine picking is an important agricultural practice that enhances harvesting efficiency and leads to increased raw cotton purity. However, the fundamental characteristics of leaf abscission and the underlying genetic basis in cotton are not clearly understood. OBJECTIVES: In this study, we aimed to (1) reveal the phenotypic variations in cotton leaf abscission, (2) discover the whole-genome differentiation sweeps and genetic loci related to defoliation, (3) identify and verify the functions of key candidate genes associated with defoliation, and (4) explore the relationship between haplotype frequency of loci and environmental adaptability. METHODS: Four defoliation-related traits of 383 re-sequenced Gossypium hirsutum accessions were investigated in four environments. The genome-wide association study (GWAS), linkage disequilibrium (LD) interval genotyping and functional identification were conducted. Finally, the haplotype variation related to environmental adaptability and defoliation traits was revealed. RESULTS: Our findings revealed the fundamental phenotypic variations of defoliation traits in cotton. We showed that defoliant significantly increased the defoliation rate without incurring yield and fiber quality penalties. The strong correlations between defoliation traits and growth period traits were observed. A genome-wide association study of defoliation traits identified 174 significant SNPs. Two loci (RDR7 on A02 and RDR13 on A13) that significantly associated with the relative defoliation rate were described, and key candidate genes GhLRR and GhCYCD3;1, encoding a leucine-rich repeat (LRR) family protein and D3-type cell cyclin 1 protein respectively, were functional verified by expression pattern analysis and gene silencing. We found that combining of two favorable haplotypes (HapRDR7 and HapRDR13) improved sensitivity to defoliant. The favorable haplotype frequency generally increased in high latitudes in China, enabling adaptation to the local environment. CONCLUSION: Our findings lay an important foundation for the potentially broad application of leveraging key genetic loci in breeding machine-pickable cotton.
Asunto(s)
Estudio de Asociación del Genoma Completo , Gossypium , Gossypium/genética , Fitomejoramiento , Genómica , Hojas de la PlantaRESUMEN
Colored cotton is also called eco-cotton because of its natural color fiber. It is inferior in yield and quality than white cotton. The underlying regulatory genes involved in fiber quality and pigment synthesis are not well understood. This study aimed to investigate the transcriptomic and proteomic changes during fiber development in a brown cotton cultivar (Z161) and a white cotton cultivar. The differential proteins with the same expression trend as genes were significantly and positively correlated with corresponding fold changes in expression. Enrichment analysis revealed that Z161, enriched in fiber elongation genes related to flavonoid biosynthesis, phenylalanine metabolism, glutathione metabolism, and many more genes (proteins) are up-regulated. Moreover, 164 glycosyltransferases genes, 15 MYB-bHLH-WD40 genes, and other transcription factors such as C2H2 (12), ERF (11), and NAC (7) were preferentially expressed in Z161. Weighted correlation network analysis identified fatty acid synthesis and energy metabolism as the principal metabolic pathways in both cotton genotypes during fiber development. Identified 15 hub genes will provide important insights for genetic manipulation of fiber quality and pigment deposition balance in brown cotton fibers.
Asunto(s)
Proteoma , Transcriptoma , Transcriptoma/genética , Proteómica , Perfilación de la Expresión Génica , Fibra de Algodón , Gossypium/genética , Regulación de la Expresión Génica de las PlantasRESUMEN
Extreme weather events threaten food security, yet global assessments of impacts caused by crop waterlogging are rare. Here we first develop a paradigm that distils common stress patterns across environments, genotypes and climate horizons. Second, we embed improved process-based understanding into a farming systems model to discern changes in global crop waterlogging under future climates. Third, we develop avenues for adapting cropping systems to waterlogging contextualised by environment. We find that yield penalties caused by waterlogging increase from 3-11% historically to 10-20% by 2080, with penalties reflecting a trade-off between the duration of waterlogging and the timing of waterlogging relative to crop stage. We document greater potential for waterlogging-tolerant genotypes in environments with longer temperate growing seasons (e.g., UK, France, Russia, China), compared with environments with higher annualised ratios of evapotranspiration to precipitation (e.g., Australia). Under future climates, altering sowing time and adoption of waterlogging-tolerant genotypes reduces yield penalties by 18%, while earlier sowing of winter genotypes alleviates waterlogging by 8%. We highlight the serendipitous outcome wherein waterlogging stress patterns under present conditions are likely to be similar to those in the future, suggesting that adaptations for future climates could be designed using stress patterns realised today.
Asunto(s)
Aclimatación , Agua , Estaciones del Año , Adaptación Fisiológica , AgriculturaRESUMEN
Foundation parents play a critical role in the genetic constituents of the derived genotypes. Deltapine-15 (DLP-15), introduced to China in 1950, is one of the most commonly used parents for early breeding programs in China. However, the formation and inheritance patterns of genomic constituents have not been studied. Therefore, this study aimed at understanding and exploring the genomic architecture of 146 DLP-15 derived cultivars with a common foundation parent DLP-15. Population structure based on sequencing data clustered genotypes into two groups (G1 and G2) supported by principal component analysis. Further exploration led to the identification of Chr-A08 with significantly differentiated regions between two groups. Moreover, we identified genome-wide identity by descent (IBD) segments (840 segments) to understand the genomic inheritance pattern in DLP-15 derived cultivars, spanning the 20-95 Mb region on Chr-A08. Interestingly, Chr-A08 depicted a unique inheritance pattern from DLP-15 to its derived cultivars. IBD-segment-based haplotype analysis suggested significant differences among the two groups. Phenotypic trait association with DLP-derived haplotypes concerning Chr-A08 suggested a significant increase in yield and fiber quality. Furthermore, distinguished IBD segments overlapped with previously reported QTLs concerning fiber yield and quality. Our results systematically identified genomic signatures transmitted from the foundation parent DLP-15 to its derived cultivars and provided a basis for further exploiting excellent haplotypes associated with DLP-15.
Asunto(s)
Fibra de Algodón , Genoma de Planta , Gossypium/genética , Haplotipos , Fenotipo , Sitios de Carácter CuantitativoRESUMEN
Large-scale genomic surveys of crop germplasm are important for understanding the genetic architecture of favorable traits. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton is poorly understood. Here, we analyzed 3,248 tetraploid cotton genomes and confirmed that the extensive chromosome inversions on chromosomes A06 and A08 underlies the geographic differentiation in cultivated Gossypium hirsutum. We further revealed that the haplotypic diversity originated from landraces, which might be essential for understanding adaptative evolution in cultivated cotton. Introgression and association analyses identified new fiber quality-related loci and demonstrated that the introgressed alleles from two diploid cottons had a large effect on fiber quality improvement. These loci provided the potential power to overcome the bottleneck in fiber quality improvement. Our study uncovered several critical genomic signatures generated by historical breeding effects in cotton and a wealth of data that enrich genomic resources for the research community.
Asunto(s)
Fibra de Algodón , Genoma de Planta , Geografía , Gossypium/crecimiento & desarrollo , Gossypium/genética , Inversión Cromosómica/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Variación Genética , Genética de Población , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Filogenia , Especificidad de la Especie , TetraploidíaRESUMEN
Cultivated cottons are the most important economic crop, which produce natural fiber for the textile industry. In recent years, the genetic basis of several essential traits for cultivated cottons has been gradually elucidated by decoding their genomic variations. Although an abundance of resequencing data is available in public, there is still a lack of a comprehensive tool to exhibit the results of genomic variations and genome-wide association study (GWAS). To assist cotton researchers in utilizing these data efficiently and conveniently, we constructed the cotton genomic variation database (CottonGVD; http://120.78.174.209/ or http://db.cngb.org/cottonGVD). This database contains the published genomic information of three cultivated cotton species, the corresponding population variations (SNP and InDel markers), and the visualized results of GWAS for major traits. Various built-in genomic tools help users retrieve, browse, and query the variations conveniently. The database also provides interactive maps (e.g., Manhattan map, scatter plot, heatmap, and linkage disequilibrium block) to exhibit GWAS and expression GWAS results. Cotton researchers could easily focus on phenotype-associated loci visualization, and they are interested in and screen for candidate genes. Moreover, CottonGVD will continue to update by adding more data and functions.
RESUMEN
KEY MESSAGE: Three extensive eco-haplotypes associated with population differentiation and environmental adaptability in Upland cotton were identified, with A06_85658585, A08_43734499 and A06_113104285 considered the eco-loci for environmental adaptability. Population divergence is suggested to be the primary force driving the evolution of environmental adaptability in various species. Chromosome inversion increases reproductive isolation between subspecies and accelerates population divergence to adapt to new environments. Although modern cultivated Upland cotton (Gossypium hirsutum L.) has spread worldwide, the noticeable phenotypic differences still existed among cultivars grown in different areas. In recent years, the long-distance migration of cotton cultivation areas throughout China has demanded that breeders better understand the genetic basis of environmental adaptability in Upland cotton. Here, we integrated the genotypes of 419 diverse accessions, long-term environment-associated variables (EAVs) and environment-associated traits (EATs) to evaluate subgroup differentiation and identify adaptive loci in Upland cotton. Two highly divergent genomic regions were found on chromosomes A06 and A08, which likely caused by extensive chromosome inversions. The subgroups could be geographically classified based on distinct haplotypes in the divergent regions. A genome-wide association study (GWAS) also confirmed that loci located in these regions were significantly associated with environmental adaptability in Upland cotton. Our study first revealed the cause of population divergence in Upland cotton, as well as the consequences of variation in its environmental adaptability. These findings provide new insights into the genetic basis of environmental adaptability in Upland cotton, which could accelerate the development of molecular markers for adaptation to climate change in future cotton breeding.
Asunto(s)
Adaptación Fisiológica , Variación Genética , Genética de Población , Genoma de Planta , Gossypium/genética , Haplotipos , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Ambiente , Estudio de Asociación del Genoma Completo , Genotipo , Gossypium/clasificación , Gossypium/crecimiento & desarrollo , FenotipoRESUMEN
Understanding the genetic diversity and population structure of germplasms is essential when selecting parents for crop breeding. The genomic changes that occurred during the domestication and improvement of Upland cotton (Gossypium hirsutum) remains poorly understood. Besides, the available genetic resources from cotton cultivars are limited. By applying restriction site-associated DNA marker sequencing (RAD-seq) technology to 582 tetraploid cotton accessions, we confirmed distinct genomic regions on chromosomes A06 and A08 in Upland cotton cultivar subgroups. Based on the pedigree, reported QTLs, introgression analyses, and genome-wide association study (GWAS), we suggest that these divergent regions might have resulted from the introgression of exotic lineages of G. hirsutum landraces and their wild relatives. These regions were the typical genomic signatures that might be responsible for maturity and fiber quality on chromosome A06 and chromosome A08, respectively. Moreover, these genomic regions are located in the putative pericentromeric regions, implying that their application will be challenging. In the study, based on high-density SNP markers, we reported two genomic signatures on chromosomes A06 and A08, which might originate from the introgression events in the Upland cotton population. Our study provides new insights for understanding the impact of historic introgressions on population divergence and important agronomic traits of modern Upland cotton cultivars.
RESUMEN
BACKGROUND: Gossypium hirsutum L. is grown worldwide and is the largest source of natural fiber crop. We focus on exploring the favorable alleles (FAs) for upland cotton varieties improvement, and further understanding the history of accessions selection and acumination of favorable allele during breeding. RESULTS: The genetic basis of phenotypic variation has been studied. But the accumulation of favorable alleles in cotton breeding history in unknown, and potential favorable alleles to enhance key agronomic traits in the future cotton varieties have not yet been identified. Therefore, 419 upland cotton accessions were screened, representing a diversity of phenotypic variations of 7362 G. hirsutum, and 15 major traits were investigated in 6 environments. These accessions were categorized into 3 periods (early, medium, and modern) according to breeding history. All accessions were divided into two major groups using 299 polymorphic microsatellite markers: G1 (high fiber yield and quality, late maturity) and G2 (low fiber yield and quality, early maturity). The proportion of G1 genotype gradually increased from early to modern breeding periods. Furthermore, 21 markers (71 alleles) were significantly associated (-log P > 4) with 15 agronomic traits in multiple environments. Seventeen alleles were identified as FAs; these alleles accumulated more in the modern period than in other periods, consistent with their phenotypic variation trends in breeding history. Our results demonstrate that the favorable alleles accumulated through breeding effects, especially for common favorable alleles. However, the potential elite accessions could be rapidly screened by rare favorable alleles. CONCLUSION: In our study, genetic variation and genome-wide associations for 419 upland cotton accessions were analyzed. Two favorable allele types were identified during three breeding periods, providing important information for yield/quality improvement of upland cotton germplasm.
Asunto(s)
Alelos , Variación Genética , Gossypium/genética , Agricultura , Estudio de Asociación del Genoma Completo , Genotipo , Gossypium/crecimiento & desarrollo , Fenotipo , FitomejoramientoRESUMEN
Commercial varieties of upland cotton (Gossypium hirsutum) have undergone extensive breeding for agronomic traits, such as fiber quality, disease resistance, and yield. Cotton breeding programs have widely used Chinese upland cotton source germplasm (CUCSG) with excellent agronomic traits. A better understanding of the genetic diversity and genomic characteristics of these accessions could accelerate the identification of desirable alleles. Here, we analyzed 10,522 high-quality single-nucleotide polymorphisms (SNP) with the CottonSNP63K microarray in 137 cotton accessions (including 12 hybrids of upland cotton). These data were used to investigate the genetic diversity, population structure, and genomic characteristics of each population and the contribution of these loci to heterosis. Three subgroups were identified, in agreement with their known pedigrees, geographical distributions, and times since introduction. For each group, we identified lineage-specific genomic divergence regions, which potentially harbor key alleles that determine the characteristics of each group, such as early maturity-related loci. Investigation of the distribution of heterozygous loci, among 12 commercial cotton hybrids, revealed a potential role for these regions in heterosis. Our study provides insight into the population structure of upland cotton germplasm. Furthermore, the overlap between lineage-specific regions and heterozygous loci, in the high-yield hybrids, suggests a role for these regions in cotton heterosis.
Asunto(s)
Gossypium/fisiología , Alelos , Genómica , Genotipo , Gossypium/genética , Vigor Híbrido/genética , Vigor Híbrido/fisiología , Fitomejoramiento , Sitios de Carácter Cuantitativo/genéticaRESUMEN
Upland cotton is the most important natural-fiber crop. The genomic variation of diverse germplasms and alleles underpinning fiber quality and yield should be extensively explored. Here, we resequenced a core collection comprising 419 accessions with 6.55-fold coverage depth and identified approximately 3.66 million SNPs for evaluating the genomic variation. We performed phenotyping across 12 environments and conducted genome-wide association study of 13 fiber-related traits. 7,383 unique SNPs were significantly associated with these traits and were located within or near 4,820 genes; more associated loci were detected for fiber quality than fiber yield, and more fiber genes were detected in the D than the A subgenome. Several previously undescribed causal genes for days to flowering, fiber length, and fiber strength were identified. Phenotypic selection for these traits increased the frequency of elite alleles during domestication and breeding. These results provide targets for molecular selection and genetic manipulation in cotton improvement.