Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 206(7): 307, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38884653

RESUMEN

Xylanase is the most important hydrolase in the xylan hydrolase system, the main function of which is ß-1,4-endo-xylanase, which randomly cleaves xylans to xylo-oligosaccharides and xylose. Xylanase has wide ranging of applications, but there remains little research on the cold-adapted enzymes required in some low-temperature industries. Glycoside hydrolase family 8 (GH8) xylanases have been reported to have cold-adapted enzyme activity. In this study, the xylanase gene dgeoxyn was excavated from Deinococcus geothermalis through sequence alignment. The recombinant xylanase DgeoXyn encodes 403 amino acids with a theoretical molecular weight of 45.39 kDa. Structural analysis showed that DgeoXyn has a (α/α)6-barrel fold structure typical of GH8 xylanase. At the same time, it has strict substrate specificity, is only active against xylan, and its hydrolysis products include xylobiose, xylotrinose, xytetranose, xylenanose, and a small amount of xylose. DgeoXyn is most active at 70 â„ƒ and pH 6.0. It is very stable at 10, 20, and 30 â„ƒ, retaining more than 80% of its maximum enzyme activity. The enzyme activity of DgeoXyn increased by 10% after the addition of Mn2+ and decreased by 80% after the addition of Cu2+. The Km and Vmax of dgeox were 42 mg/ml and 20,000 U/mg, respectively, at a temperature of 70 â„ƒ and pH of 6.0 using 10 mg/ml beechwood xylan as the substrate. This research on DgeoXyn will provide a theoretical basis for the development and application of low-temperature xylanase.


Asunto(s)
Deinococcus , Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Xilanos , Deinococcus/enzimología , Deinococcus/genética , Especificidad por Sustrato , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Xilanos/metabolismo , Frío , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Concentración de Iones de Hidrógeno , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Secuencia de Aminoácidos , Hidrólisis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Clonación Molecular , Cinética , Peso Molecular , Disacáridos
2.
Adv Mater ; 36(11): e2310279, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088488

RESUMEN

The performance of large-area perovskite solar cells (PSCs) has been assessed for typical compositions, such as methylammonium lead iodide (MAPbI3 ), using a blade coater, slot-die coater, solution shearing, ink-jet printing, and thermal evaporation. However, the fabrication of large-area all-inorganic perovskite films is not well developed. This study develops, for the first time, an eco-friendly solvent engineered all-inorganic perovskite ink of dimethyl sulfoxide (DMSO) as a main solvent with the addition of acetonitrile (ACN), 2-methoxyethanol (2-ME), or a mixture of ACN and 2-ME to fabricate large-area CsPbI2.77 Br0.23 films with slot-die coater at low temperatures (40-50 °C). The perovskite phase, morphology, defect density, and optoelectrical properties of prepared with different solvent ratios are thoroughly examined and they are correlated with their respective colloidal size distribution and solar cell performance. The optimized slot-die-coated CsPbI2.77 Br0.23 perovskite film, which is prepared from the eco-friendly binary solvents dimethyl sulfoxide:acetonitrile (0.8:0.2 v/v), demonstrates an impressive power conversion efficiency (PCE) of 19.05%. Moreover, the device maintains ≈91% of its original PCE after 1 month at 20% relative humidity in the dark. It is believed that this study will accelerate the reliable manufacturing of perovskite devices.

3.
ACS Nano ; 17(20): 20262-20272, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37830778

RESUMEN

Dielectric capacitors are critical components in electronics and energy storage devices. The polymer-based dielectric capacitors have the advantages of device flexibility, fast charge-discharge rates, low loss, and graceful failure. Elevating the use of polymeric dielectric capacitors for advanced energy applications such as electric vehicles (EVs), however, requires significant enhancement of their energy densities. Here, we report a polymer thin film heterostructure-based capacitor of poly(vinylidene fluoride)/poly(methyl methacrylate) with stratified 2D nanofillers (Mica or h-BN nanosheets) (PVDF/PMMA-2D fillers/PVDF), that shows enhanced permittivity, high dielectric strength, and an ultrahigh energy density of ≈75 J/cm3 with efficiency over 79%. Density functional theory calculations verify the observed permittivity enhancement. This approach of using oriented 2D nanofillers-based polymer heterostructure composites is expected to be versatile for designing high energy density thin film polymeric dielectric capacitors for myriads of applications.

4.
Anim Biotechnol ; 34(9): 5097-5112, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37729444

RESUMEN

As one of the most important livestock breeds on the Qinghai-Tibet Plateau, Tibetan sheep are of great importance to the local economy, agriculture and culture. Its adaptive mechanism in low temperature and low oxygen at highland altitudes has not been reported. In this study, transcriptome sequencing was used to analyze the heart, liver, spleen, lung, kidney, and muscle tissue of sheep at low and highland altitudes. LOC101112291, SELENOW, COL3A1, GPX1, TMSB4X and HSF4 were selected as candidate genes for adapting to plateau characteristics in Tibet Sheep. Besides, glutathione metabolism, arachidonic acid metabolism, nucleotide excision repair, regulation of actin cytoskeleton, protein digestion and absorption, thyroid hormone synthesis, relaxation signaling pathways may play important roles in the adaptation to plateau hypoxia, and cold tolerance. Structural analysis also showed that sequencing genes related to the adaptation mechanism of Tibet sheep to highland altitude. This study will lay a certain foundation for Tibet sheep research.


Tibet sheep are an ancient species in the Qinghai Tibet Plateau. After a long period of domestication. Tibet sheep adapt to the hypoxic environment of the plateau in terms of physiology and morphology. At the same time, Tibet sheep is also one of the major sources of material for herdsmen in tibetan. In this study, six different tissue samples (heart, liver, spleen, lung, kidney, and muscle) of Tibet sheep were analyzed to reveal the underlying mechanisms of different tissues respond to hypothermia condition. The results showed that six key genes and eight important signaling pathways involved in regulating the adaptation of Tibet sheep to the plateau. In addition, there were more alternative splicing (AS) events and single nucleotide polymorphism (SNP) sites in highland altitude Tibet sheep than in lowland altitude sheep, which was also a concern in the highland altitude adaptability of Tibet sheep.


Asunto(s)
Altitud , Oxígeno , Animales , Ovinos/genética , Tibet , Hipoxia/genética , Perfilación de la Expresión Génica , Transcriptoma/genética
5.
Clin Transl Med ; 13(6): e1289, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37264743

RESUMEN

BACKGROUND: HCFC1 encodes transcriptional co-regulator HCF-1, which undergoes an unusual proteolytic maturation at a centrally located proteolysis domain. HCFC1 variants were associated with X-linked cobalamin metabolism disorders and mental retardation-3. This study aimed to explore the role of HCFC1 variants in common epilepsy and the mechanism underlying phenotype heterogeneity. METHODS: Whole-exome sequencing was performed in a cohort of 313 patients with idiopathic partial (focal) epilepsy. Functional studies determined the effects of the variants on the proteolytic maturation of HCF-1, cell proliferation and MMACHC expression. The role of HCFC1 variants in partial epilepsy was validated in another cohort from multiple centers. RESULTS: We identified seven hemizygous HCFC1 variants in 11 cases and confirmed the finding in the validation cohort with additional 13 cases and six more hemizygous variants. All patients showed partial epilepsies with favorable outcome. None of them had cobalamin disorders. Functional studies demonstrated that the variants in the proteolysis domain impaired the maturation by disrupting the cleavage process with loss of inhibition of cell growth but did not affect MMACHC expression that was associated with cobalamin disorder. The degree of functional impairment was correlated with the severity of phenotype. Further analysis demonstrated that variants within the proteolysis domain were associated with common and mild partial epilepsy, whereas those in the kelch domain were associated with cobalamin disorder featured by severe and even fatal epileptic encephalopathy, and those in the basic and acidic domains were associated with mainly intellectual disability. CONCLUSION: HCFC1 is potentially a candidate gene for common partial epilepsy with distinct underlying mechanism of proteolysis dysfunction. The HCF-1 domains played distinct functional roles and were associated with different clinical phenotypes, suggesting a sub-molecular effect. The distinct difference between cobalamin disorders and idiopathic partial epilepsy in phenotype and pathogenic mechanism, implied a clinical significance in early diagnosis and management.


Asunto(s)
Epilepsias Parciales , Epilepsia , Humanos , Proteolisis , Epilepsia/genética , Vitamina B 12/genética , Vitamina B 12/metabolismo , Regulación de la Expresión Génica , Epilepsias Parciales/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo
6.
ACS Appl Mater Interfaces ; 15(21): 25495-25505, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37201183

RESUMEN

Homogeneous and pinhole-free large-area perovskite films are required to realize the commercialization of perovskite modules and panels. Various large-area perovskite coatings were developed; however, at their film coating and drying stages, many defects were formed on the perovskite surface. Consequently, not only the devices lost substantial performance but also their long-term stability deteriorated. Here, we fabricated a compact and uniform large-area MAPbI3-perovskite film by a slot-die coater at room temperature (T) and at high relative humidity (RH) up to 40%. The control slot-die-coated perovskite solar cell (PSC) produced 1.082 V open-circuit voltage (Voc), 24.09 mA cm-2 short current density (Jsc), 71.13% fill factor (FF), and a maximum power conversion efficiency (PCE) of 18.54%. We systematically employed a multi-functional artificial amino acid (F-LYS-S) to modify the perovskite defects. Such amino acids are more inclined to bind and adhere to the perovskite defects. The amino, carbonyl, and carboxy functional groups of F-LYS-S interacted with MAPbI3 through Lewis acid-base interaction and modified iodine vacancies significantly. Fourier transform infrared spectroscopy revealed that the C═O group of F-LYS-S interacted with the uncoordinated Pb2+ ions, and X-ray photoelectron spectroscopy revealed that the lone pair of -NH2 coordinated with the uncoordinated Pb2+ and consequently modified the I- vacancies remarkably. As a result, the F-LYS-S-modified device demonstrated more than three-fold charge recombination resistance, which is one of the primary requirements to fabricate high-performance PSCs. Therefore, the device fabricated employing F-LYS-S demonstrated remarkable PCE of 21.08% with superior photovoltaic parameters of 1.104 V Voc, 24.80 mA cm-2 Jsc, and 77.00%. FF. Concurrently, the long-term stability of the PSCs was improved by the F-LYS-S post-treatment, where the modified device retained ca. 89.6% of its initial efficiency after storing for 720 h in air (T ∼ 27 °C and RH ∼ 50-60%).

7.
Small ; 19(35): e2301061, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37104854

RESUMEN

The additive engineering strategy promotes the efficiency of solution-processed perovskite solar cells (PSCs) over 25%. However, compositional heterogeneity and structural disorders occur in perovskite films with the addition of specific additives, making it imperative to understand the detrimental impact of additives on film quality and device performance. In this work, the double-edged sword effects of the methylammonium chloride (MACl) additive on the properties of methylammonium lead mixed-halide perovskite (MAPbI3-x Clx ) films and PSCs are demonstrated. MAPbI3-x Clx films suffer from undesirable morphology transition during annealing, and its impacts on the film quality including morphology, optical properties, structure, and defect evolution are systematically investigated, as well as the power conversion efficiency (PCE) evolution for related PSCs. The FAX (FA = formamidinium, X = I, Br, and Ac) post-treatment strategy is developed to inhibit the morphology transition and suppress defects by compensating for the loss of the organic components, a champion PCE of 21.49% with an impressive open-circuit voltage of 1.17 V is obtained, and remains over 95% of the initial efficiency after storing over 1200 hours. This study elucidates that understanding the additive-induced detrimental effects in halide perovskites is critical to achieve the efficient and stable PSCs.

8.
Microorganisms ; 11(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36838372

RESUMEN

Waste oil pollution and the treatment of oily waste present a challenge, and the exploitation of microbial resources is a safe and efficient method to resolve these problems. Lipase-producing microorganisms can directly degrade waste oil and promote the degradation of oily waste and, therefore, have very significant research and application value. The isolation of efficient oil-degrading strains is of great practical significance in research into microbial remediation in oil-contaminated environments and for the enrichment of the microbial lipase resource library. In this study, Acinetobacter junii WCO-9, an efficient oil-degrading bacterium, was isolated from an oil-contaminated soil using olive oil as the sole carbon source, and its enzyme activity of ρ-nitrophenyl decanoate (ρ-NPD) decomposition was 3000 U/L. The WCO-9 strain could degrade a variety of edible oils, and its degradation capability was significantly better than that of the control strain, A junii ATCC 17908. Comparative pan-genome and lipid degradation pathway analyses indicated that A. junii isolated from the same environment shared a similar set of core genes and that the species accumulated more specific genes that facilitated resistance to environmental stresses under different environmental conditions. WCO-9 has accumulated a complete set of oil metabolism genes under a long-term oil-contamination environment, and the compact arrangement of abundant lipase and lipase chaperones has further strengthened the ability of the strain to survive in such environments. This is the main reason why WCO-9 is able to degrade oil significantly more effectively than ATCC 17908. In addition, WCO-9 possesses a specific lipase that is not found in homologous strains. In summary, A. junii WCO-9, with a complete triglyceride degradation pathway and the specific lipase gene, has great potential in environmental remediation and lipase for industry.

9.
ACS Appl Mater Interfaces ; 14(51): 56900-56909, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36521061

RESUMEN

The power conversion efficiency (PCE) of perovskite solar cells (PSCs) has increased and levels with silicon solar cells; however, their commercialization has not yet been realized because of their poor long-term stability. One of the primary causes of the instability of PSC devices is the large concentration of defects in the polycrystalline perovskite film. Such defects limit the device performance besides triggering hysteresis and device instability. In this study, tetradodecylammonium bromide (TDDAB) was used as a postsurface modifier to suppress the density of defects from the mixed perovskite film (CsFAMA). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analyses validated that TDDAB binds to the mixed perovskite through hydrogen bonding. The X-ray diffraction (XRD) and two-dimensional grazing incidence wide-angle X-ray scattering (2D GIWAXS) study uncovered that the TDDAB modification formed a capping layer of (TDDA)2PbI1.66Br2.34 on the surface of the three-dimensional (3D) perovskite. The single charge transport device prepared from the TDDAB-modified perovskite film revealed that both the electron and hole defects were considerably repressed due to the modification. Consequently, the modified device displayed a champion PCE of 21.33%. The TDDAB surface treatment not only enhances the PCE but the bulky cation of the TDDAB also forms a hydrophobic capping surface (water contact angle of 93.39°) and safeguards the underlayer perovskite from moisture. As a result, the modified PSC has exhibited almost no performance loss after 30 days in air (RH ≈ 40%).

10.
ACS Appl Mater Interfaces ; 14(24): 28044-28059, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35679233

RESUMEN

The power conversion efficiency (PCE) of perovskite solar cells has been showing rapid improvement in the last decade. However, still, there is an unarguable performance deficit compared with the Schockley-Queisser (SQ) limit. One of the major causes for such performance discrepancy is surface and grain boundary defects. They are a source of nonradiative recombination in the devices that not only causes performance loss but also instability of the solar cells. In this study, we employed a direct postsurface passivation strategy at mild temperatures to modify perovskite layer defects using tetraoctylammonium chloride (TOAC). The passivated perovskite layers have demonstrated extraordinary improvement in photoluminescence and charge carrier lifetimes compared to their control counterparts in both Cs0.05(FAPbI3)0.83(MAPbBr3)0.17 and MAPbI3-type perovskite layers. The investigation on electron-only and hole-only devices after TOAC treatment revealed suppressed electron and hole trap density of states. The electrochemical study demonstrated that TOAC treatment improved the charge recombination resistance of the perovskite layers and reduced the charge accumulation on the surface of perovskite films. As a result, perovskite solar cells prepared by TOAC treatment showed a champion PCE of 21.24% for the Cs0.05(FAPbI3)0.83(MAPbBr3)0.17-based device compared to 19.58% without passivation. Likewise, the PCE of MAPbI3 improved from 18.09 to 19.27% with TOAC treatment. The long-term stability of TOAC-passivated perovskite Cs0.05(FAPbI3)0.83(MAPbBr3)0.17 devices has retained over 97% of its initial performance after 720 h in air.

11.
Int J Biol Macromol ; 213: 791-803, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35679959

RESUMEN

Flexible wearable sensors based on conductive hydrogels are attracting increasing interest. To meet the urgent demands of sustainability and eco-friendliness, biopolymer-based physically crosslinked hydrogels have drawn great attention. Starch has a great potential due to its renewability, biocompatibility, nontoxicity and low cost. However, poor mechanical property, low conductivity and lack of versatility are seriously limiting the applications of starch-based hydrogels in wearable sensors. Moreover, the development of starch hydrogel-based wearable sensors in harsh conditions remains a challenge. Herein, multifunctional and physical crosslinking hydrogels were developed by introducing ionic liquid (1-ethyl-3-methyl imidazolium acetate) and metal salt (AlCl3) into starch/polyvinyl alcohol double-network structure. The hydrogel exhibited excellent stretchability (567%), tensile strength (0.53 MPa), high conductivity (2.75 S·m-1), good anti-freezing, antibacterial and anti-swelling properties. A wearable sensor assembled from the starch-based hydrogel exhibited a wide working range, high sensitivity (gauge factor: 5.93) and excellent reversibility. Due to the versatility, the sensor effectively detected human motion in normal and underwater environment, and possessed a sensitive pressure and thermal response. Overall, the present work provided a promising route to develop multifunctional and "green" biopolymer-based hydrogels for wearable sensors in human health and sporting applications.


Asunto(s)
Hidrogeles , Dispositivos Electrónicos Vestibles , Antibacterianos/farmacología , Conductividad Eléctrica , Humanos , Hidrogeles/química , Almidón
12.
Biomed Chromatogr ; 36(8): e5393, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35527473

RESUMEN

BACKGROUND: To minimize drug-related toxicity and monitor dosing regimens, an ultra-sensitive, simple and high-throughput analytical method for therapeutic drug monitoring is required. A novel LC-MS/MS bioassay of levetiracetam, lamotrigine and 10-hydroxycarbazepine in human plasma was established. The analytes were separated on a Hypersil GOLD™ C18 column under a 2.5 min isocratic elution after one-step protein precipitation. MS detection was performed under electrospray ionization positive-mode fitted with selected reaction monitoring. The validated ranges were 0.1-20 µg/ml for LTG, 0.3-60 µg/ml for 10-hydroxycarbazepine and levetiracetam. The intra- and inter-batches of precision and accuracy was within ±15%. The novel method met all other criteria. CONCLUSION: This method can be used to monitor drug concentrations and decision-making in epileptic patients.


Asunto(s)
Epilepsia , Espectrometría de Masas en Tándem , Anticonvulsivantes , Carbamazepina/análogos & derivados , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Monitoreo de Drogas/métodos , Epilepsia/tratamiento farmacológico , Humanos , Lamotrigina/uso terapéutico , Levetiracetam , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
13.
ACS Appl Mater Interfaces ; 14(4): 5414-5424, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35050592

RESUMEN

The intrinsic stability issues of the perovskite materials threaten the efficiency and stability of the devices, and stability has become the main obstacle to industrial applications. Herein, the efficient and facile passivation strategy by 2-amino-5-iodobenzoic acid (AIBA) is proposed. The impact of AIBA on the properties of the perovskite films and device performance is systemically studied. The results show that the trap states are eliminated without affecting the crystal properties of the perovskite grains, leading to the enhanced performance and stability of the perovskite solar cells (PSCs). A high power conversion efficiency (PCE) of 20.23% and lower hysteresis index (HI) of 1.49‰ are achieved, which represent one of the most excellent PCE and HI values for the inverted PSCs based on MAPbI3/[6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM) planar heterojunction structure. Moreover, the UV stability of the perovskite films and the thermal and moisture stability of the devices are also enhanced by the AIBA passivation. The PCE of the device with AIBA can maintain about 83.41% for 600 h (40 RH %) and 64.06% for 100 h (55-70 RH %) of its initial PCE value without any encapsulation, while the control device can maintain only about 72.91 and 45.59% of its initial PCE. Density functional theory calculations are performed to study the origins of enhanced performance. Interestingly, the results show that the surface states induced by AIBA can facilitate the photoexcited charge transfer dynamics and reduce the electron-hole recombination loss. The passivation method developed in this work provides an efficient way to enhance the stability and performance of inverted PSCs.

14.
Front Neurol ; 12: 683275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177787

RESUMEN

Aims: To investigate the effects of single nucleotide polymorphisms (SNPs) in genes of one-carbon metabolism (OCM) related enzymes and anti-epileptic drug (AED) monotherapy on homocysteine (Hcy) metabolism in patients with epilepsy, and to further explore specific SNPs that may increase patients' susceptibility to the effects of AEDs on the Hcy imbalance. Method: This case-control study analyzed 279 patients with epilepsy, including patients receiving monotherapy with valproate (VPA) (n = 53), oxcarbazepine (OXC) (n = 71), lamotrigine (LTG) (n = 55), or levetiracetam (LEV) (n = 35) and patients who had not taken any AEDs (controls, n = 65) for at least 6 months. Serum levels of vitamin B12 (vit B12), folate (FA) and Hcy were measured, and 23 SNPs in 13 genes of OCM-related enzymes were genotyped in all patients. Results: Methylenetetrahydrofolate reductase (MTHFR) rs1801133 was associated with elevated serum Hcy levels in patients with epilepsy (P < 0.001), and patients presenting the TT genotype exhibited higher serum Hcy levels than patients with the CC (P < 0.001) or CT (P < 0.001) genotype. A subsequent multiple linear regression analysis showed that AED monotherapy with VPA (vs. control: P = 0.023) or OXC (vs. control: P = 0.041), and genotypes of MTHFR rs1801133 TT (vs. CC: P < 0.001; vs. CT: P < 0.001), transcobalamin 2 (TCN2) rs1801198 CC (vs. GC: P = 0.039) and folate receptor 1 (FOLR1) rs2071010 AA (vs. GA: P = 0.031) were independent risk factors for higher Hcy levels. In the subgroup analysis of patients taking OXC, we found that patients with genotypes of MTHFR rs1801133 TT (vs. CC: P = 0.001; vs. CT: P < 0.001) and TCN2 rs1801198 CC (vs. GC: P = 0.021; vs. GG: P = 0.018) exhibited higher serum Hcy levels. Conclusions: VPA, OXC, and genotypes of MTHFR rs1801133 TT, TCN2 rs1801198 CC, and FOLR1 rs2071010 AA are all independent risk factors for elevated Hcy levels in patients with epilepsy. Moreover, genotypes of MTHFR rs1801133 TT and TCN2 rs1801198 CC may increase patients' susceptibility to the effect of OXC on disrupting Hcy homeostasis.

15.
Int J Mol Sci ; 22(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33923104

RESUMEN

Most late embryogenesis abundant group 3 (G3LEA) proteins are highly hydrophilic and disordered, which can be transformed into ordered α-helices to play an important role in responding to diverse stresses in numerous organisms. Unlike most G3LEA proteins, DosH derived from Dinococcus radiodurans is a naturally ordered G3LEA protein, and previous studies have found that the N-terminal domain (position 1-103) of DosH protein is the key region for its folding into an ordered secondary structure. Synthetic biology provides the possibility for artificial assembling ordered G3LEA proteins or their analogues. In this report, we used the N-terminal domain of DosH protein as module A (named DS) and the hydrophilic domains (DrHD, BnHD, CeHD, and YlHD) of G3LEA protein from different sources as module B, and artificially assembled four non-natural hydrophilic proteins, named DS + DrHD, DS + BnHD, DS + CeHD, and DS + YlHD, respectively. Circular dichroism showed that the four hydrophile proteins were highly ordered proteins, in which the α-helix contents were DS + DrHD (56.1%), DS + BnHD (53.7%), DS + CeHD (49.1%), and DS + YLHD (64.6%), respectively. Phenotypic analysis showed that the survival rate of recombinant Escherichia coli containing ordered hydrophilic protein was more than 10% after 4 h treatment with 1.5 M NaCl, which was much higher than that of the control group. Meanwhile, in vivo enzyme activity results showed that they had higher activities of superoxide dismutase, catalase, lactate dehydrogenase and less malondialdehyde production. Based on these results, the N-terminal domain of DosH protein can be applied in synthetic biology due to the fact that it can change the order of hydrophilic domains, thus increasing stress resistance.


Asunto(s)
Escherichia coli/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tolerancia a la Sal/fisiología , Antioxidantes/metabolismo , Catalasa/metabolismo , Dicroismo Circular , Simulación por Computador , Deinococcus/química , Interacciones Hidrofóbicas e Hidrofílicas , Malondialdehído/metabolismo , Viabilidad Microbiana , Microorganismos Modificados Genéticamente , Proteínas Recombinantes/genética , Superóxido Dismutasa/metabolismo
16.
Nanotechnology ; 32(14): 145702, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33339004

RESUMEN

Zn2SnO4 (ZTO) nanocrystals are extensively studied in various fields. However, size-dependent ZTO nanocrystals are still challenging to understand their structural, optical, photocatalytic, and optoelectronic properties. ZTO nanocrystals are synthesized by a facile hydrothermal reaction method. The structural properties of the synthesized ZTO nanocrystals are studied by x-ray diffraction and transmission electron microscope. The sizes of the ZTO nanocrystals are controlled by the pH values of the precursor and the molar ratios of the Zn:Sn in the starting materials. ZTO nanocrystals with the small size of 6 nm and large size of 270 nm are obtained by our method. The Eu3+ ions are doped into ZTO nanocrystals to probe size-dependent Eu doping sites, which shows significant potential applications in light emitting diode phosphors. Moreover, the photocatalytic activity of ZTO nanocrystals on rhodamine (RhB) decoloration are investigated, and the results show that 6 nm ZTO nanocrystals show better performance in the photocatalytic decoloration of RhB compared to 270 nm nanocrystals. Most importantly, we design and fabricate optoelectronic devices to detect IR light based on our nanocrystals and a self-prepared NIR cyanine dye. The device based on small sized ZTO nanocrystals exhibits better device performance under 808 nm IR light compared to that of the large sized ZTO nanocrystals. We believe this work represents ZTO size-dependent properties in term of structural, optical, photocatalytic, and optoelectronic properties as a multifunctional material.

17.
Nanoscale ; 12(45): 22904-22916, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33185228

RESUMEN

Among the layered two dimensional semiconductors, molybdenum disulfide (MoS2) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light-matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response (R) and external quantum efficiency (EQE) of few-atomic layered MoS2 phototransistors fabricated on a SiO2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm-900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 103 A W-1 under white light illumination with an optical power Popt = 0.02 nW. The R value increased to 3.5 × 103 A W-1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 103 and 6 × 103 A W-1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 105% and 106% measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent-dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device.

18.
Nanoscale Horiz ; 5(12): 1574-1585, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33033819

RESUMEN

The defects at the interface and grain boundaries (GBs) of perovskite films limit the performance of perovskite solar cells (PSCs) seriously. Herein, organic semiconductors with different terminal groups including a ladder-type electron-deficient-core-based fused structure (DAD) fused core with 2-(3-oxo-2,3-dihydro-1H-inden-1 ylidene)malononitrile (BTP-4H), DAD with 2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-inden-1 ylidene)malononitrile (BTP-4Cl), and DAD with 2-(5,6-difluoro-3-oxo-2,3-dihydro-1H-inden-1 ylidene)malononitrile (BTP-4F) are introduced into perovskite films to study the effects of the terminal groups on the PSC performance. A physical model is proposed to understand the effects of the terminal groups on the perovskite growth and energy level alignment of devices. Compared with BTP-4H and BTP-4Cl, BTP-4F can more effectively delay the crystallization rate and increase the crystal sizes due to hydrogen bonding of F and FA. BTP-4F can also provide more efficient charge transport channels due to the optimal energy level alignment. Most importantly, BTP-4F can promote charge transport from the perovskite film to spiro-OMeTAD and to SnO2, thus realizing simultaneous up-bottom passivation of perovskite films. Finally, the BTP-4F passivated PSCs exhibit a remarkable PCE of 22.16%, and the device can maintain ∼86% of the initial PCE after 5000 h. Therefore, this work presents significant potential of organic semiconductors in PSCs toward high efficiency and high stability due to the terminal groups.

19.
ACS Appl Mater Interfaces ; 12(22): 24737-24746, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32379423

RESUMEN

Organic-inorganic hybrid perovskite solar cells (PSCs) have achieved rapid progress in this decade. However, the limited solar spectral utilization has restricted the further improvement of performance of the PSCs. One promising approach to solving this problem is utilizing IR to visible upconversion nanoparticles (UCNPs) in the PSC devices. Despite being confined by the lower quantum yield (QY) and smaller absorption cross section of the traditional UCNPs, their application is still a great challenge. In this work, the IR-783 dye-sensitized core/shell NaYF4:Yb3+, Er3+@NaYF4:Yb3+, and Nd3+ UCNPs were synthesized and coupled with plasmonic Au nanorods films. Thereby, the upconversion luminescence (UCL) intensity was enhanced by about 120-fold, whereas the luminescent QY was improved from 0.2 to 1.2%. Then, the composite UCNPs were assembled on the SnO2 layer of the PSCs, which resulted in the power conversion efficiency (PCE) increasing from 19.4 to 20.5% under simulated 100 mw/cm2 AM 1.5G irradiation. Up to now, it is the highest PCE for the PSCs based on various upconversion devices. Under the irradiation of a sun concentrator (1 W/cm2), the PCE of the device can be further improved to 21.1%. In-depth studies indicate that under standard sunlight irradiation, the improvement of PCE is due to both the IR to visible UCL and the scattering effect of the UCNPs. Under irradiation of a sun concentrator, the UCL contributes dominantly to the further improvement of PCE. This work provides an effective method for increasing the luminescent QY utilized in the PSCs and is of great significance for future PSCs that use sunlight concentrator.

20.
ACS Appl Mater Interfaces ; 12(15): 17509-17518, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32192335

RESUMEN

Broadening the near-infrared (NIR) spectrum of device is critical to further improve the power conversion efficiency (PCE) of the perovskite solar cells (PSCs). In this work, novel Cu2CdZn1-xSnS4 (CZTS:Cd) film prepared by thermal evaporation method was employed as the NIR light-harvesting layer to complement the absorption of the perovskite. At the same time, Au nanorods (NRs) were introduced into the hole-transporting layer (HTL) to boost the utilization of CZTS:Cd to NIR light through localized surface plasmon effect. The perovskite/CZTS:Cd and Au NR-integrated PSCs can extend the photoelectric response to 900 nm. And more, the well-matched energy levels between CZTS:Cd and perovskite can effectively extract holes from perovskite and depress the charge carrier recombination. As a result, the champion PSC device insulating with CZTS:Cd and Au NRs demonstrates a remarkably increased PCE from 19.30 to 21.11%. The modified PSC devices also demonstrate highly improved long-time stability. The device retains a PCE of 87% after 500 h even under air with a relative humidity of 85%, implying the superior humidity stability of the devices with CZTS:Cd. This work suggests that perovskite/inorganic-integrated structure is a promising strategy to broaden and boost the NIR response of the PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...